Dover HS / Career Technical Center
25 Alumni Drive, Dover, NH

Joint Building Committee:
Robert Carrier, Chairperson
Jason Gagnon, City Councilor
Sarah Greenshields, City Councilor
Amanda Russell, School Board Representative
Matthew Severson PE, School Citizen Representative
Mark Guether, City Citizen Representative

Dover School/CTC District Participants:
Elaine Arbour, Superintendent, Dover Public Schools
Peter Driscoll, Principal, Dover HS & Career Technical Center
Louise Paradis, Director, Career Technical Center
Libby Simmons, Business Administrator, Dover Public Schools
Jeffrey White, Facilities Director

HMFH Architects, Inc. / Architect
Halvorson Design Partnership, Inc / Landscape Architect
Nobis Engineering / Civil Engineering
Foley, Buhl, Roberts Associates, Inc. / Structural Engineers
Garcia, Galuska & DeSousa Consulting Engineers, Inc. / MEP, FP Engineers
Kalin Associates, Inc. / Specifications Consultant
McPhail Associates, LLC / Geotechnical & Geoenvironmental Engineers
Crabtree McGrath Associates, Inc./ Food Service & Equipment Consultants
Cavanaugh Tocci Associates, Inc. / Acoustical & Theatrical Consultants

PC Construction Company / Construction Manager

100% CONFORMED SET - FOR CONSTRUCTION
CONSTRUCTION SET
September 12th, 2016

The 100% Conformed Set - For Construction drawings are a compilation of the original August 12, 2016 100% Construction Documents, published Addenda's A & B, and other specific changes communicated by PC Construction during the bidding period. These conformed drawings were prepared for convenience only. The completeness and/or accuracy of the information is not guaranteed; any inconsistencies found do not alter the Contract Documents which consist of 100% Construction Documents dated 8/12/2016, published Addenda's A & B, and specific changes communicated by PC Construction during bidding period.
Sheet Index:

- X1.0: Cover Sheet (Aerial Photo)
- X1.1: West of Bellamy Road
- X1.2: High School North
- X1.3: Middle School
- X1.4: High School South
- X1.5: Notes

Key Points:

- Bellamy Park Road
- Cataract Ave
- Bellamy Reservoir
- Cold Springs Road
- Academy Drive
- The Garrison
- Lea Beth Circle
- USA Beth Drive
- Lea Beth Circle
- Footbridge Lane
- Nestle Way

Legend:

- Hemlock Forest
- South Mountain
- Knob Marsh Road (Route 120)
PLAN REFERENCES:
1. EXISTING CONDITIONS, TOPOGRAPHICAL INFORMATION, NORTH ORIENTATION, NORTH ARROW, AND COORDINATE VALUES DEPICTED ON THESE DRAWINGS ARE BASED ON PLANS TITLED "DOVER HIGH SCHOOL & REGIONAL CAREER TECHNICAL CENTER", DATED FEBRUARY 23, 2015, PROVIDED TO NOBIS ENGINEERING, INC. BY SEBAGO TECHNICS, INC.
1. EXISTING CONDITIONS, TOPOGRAPHICAL INFORMATION, NORTH ORIENTATION, NORTH ARROW, AND PLAN REFERENCES:

- DRAINAGE SCHEDULE

<table>
<thead>
<tr>
<th>INV. OUT</th>
<th>INV. IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.8</td>
<td>74.0</td>
</tr>
<tr>
<td>75.8</td>
<td>81.2 (10'' ROOF DRAIN)</td>
</tr>
<tr>
<td>76.3 (NW)</td>
<td>78.0</td>
</tr>
<tr>
<td>77.75</td>
<td>78.0</td>
</tr>
<tr>
<td>82.1</td>
<td>82.2</td>
</tr>
<tr>
<td>89.2</td>
<td>89.3</td>
</tr>
<tr>
<td>90.6 (N)</td>
<td>90.6</td>
</tr>
<tr>
<td>91.2</td>
<td>90.35</td>
</tr>
<tr>
<td>91.3</td>
<td>91.4</td>
</tr>
<tr>
<td>92.2</td>
<td>92.3</td>
</tr>
<tr>
<td>93.1</td>
<td>93.3</td>
</tr>
<tr>
<td>93.8</td>
<td></td>
</tr>
<tr>
<td>RIM = 84.0</td>
<td></td>
</tr>
<tr>
<td>RIM = 86.0</td>
<td></td>
</tr>
<tr>
<td>RIM = 84.4</td>
<td></td>
</tr>
<tr>
<td>RIM = 87.0</td>
<td></td>
</tr>
<tr>
<td>RIM = 94.5</td>
<td></td>
</tr>
<tr>
<td>RIM = 95.6</td>
<td></td>
</tr>
<tr>
<td>RIM = 96.8</td>
<td></td>
</tr>
<tr>
<td>RIM = 96.5</td>
<td></td>
</tr>
<tr>
<td>RIM = 97.6</td>
<td></td>
</tr>
<tr>
<td>RIM = 97.5</td>
<td></td>
</tr>
<tr>
<td>FI26B</td>
<td></td>
</tr>
<tr>
<td>FI26A</td>
<td></td>
</tr>
<tr>
<td>CB35</td>
<td></td>
</tr>
<tr>
<td>CB33</td>
<td></td>
</tr>
<tr>
<td>CB31</td>
<td></td>
</tr>
<tr>
<td>CB30</td>
<td></td>
</tr>
<tr>
<td>CB29 (PEDESTRIAN GRATE)</td>
<td></td>
</tr>
<tr>
<td>CB28</td>
<td></td>
</tr>
<tr>
<td>CB27 (PEDESTRIAN GRATE)</td>
<td></td>
</tr>
<tr>
<td>CB26</td>
<td></td>
</tr>
<tr>
<td>L = 140 LF 15'' HDPE (TO DMH40)</td>
<td></td>
</tr>
<tr>
<td>L = 98 LF 24'' HDPE (TO CB38)</td>
<td></td>
</tr>
<tr>
<td>L = 158 LF 15'' HDPE (TO CB35)</td>
<td></td>
</tr>
<tr>
<td>L = 120 LF 15'' HDPE (TO CB33)</td>
<td></td>
</tr>
<tr>
<td>L = 40 LF 15'' HDPE (TO DMH32)</td>
<td></td>
</tr>
<tr>
<td>L = 104 LF 12'' HDPE (TO CB31)</td>
<td></td>
</tr>
<tr>
<td>L = 62 LF 15'' HDPE (TO CB31)</td>
<td></td>
</tr>
<tr>
<td>L = 66 LF 12'' HDPE (TO CB29)</td>
<td></td>
</tr>
<tr>
<td>L = 109 LF 12'' HDPE (TO CB28)</td>
<td></td>
</tr>
<tr>
<td>L = 46 LF 12'' HDPE (TO CB27)</td>
<td></td>
</tr>
<tr>
<td>L = 29 LF 6'' HDPE (TO CB26)</td>
<td></td>
</tr>
<tr>
<td>L = 62 LF 6'' HDPE (TO FI26B)</td>
<td></td>
</tr>
<tr>
<td>S = 0.0189 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0111 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0184 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0207 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0583 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0150 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0058 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0056 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0106 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0073 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0065 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0069 FT/FT</td>
<td></td>
</tr>
<tr>
<td>S = 0.0065 FT/FT</td>
<td></td>
</tr>
</tbody>
</table>

SCHOOL & REGIONAL CAREER TECHNICAL CENTER, DATED FEBRUARY 23, 2015, PROVIDED TO COORDINATE VALUES DEPICTED ON THESE DRAWINGS ARE BASED ON PLANS TITLED "DOVER HIGH" REVISIONS NO. DRAWING NUMBER

- DATE REMARKS BY
1. REFER TO C1 FOR NOTES.

2. "FINAL FOUNDATION ENGINEERING REPORT, DOVER HIGH SCHOOL, DOVER, NEW HAMPSHIRE", DATED NOVEMBER 2, 2015, PREPARED BY MCPHAIL ASSOCIATES, LLC PROVIDES PERIMETER DRAIN AND UNDERSLAB DRAINAGE RECOMMENDATIONS ON PAGE 9 AS FOLLOWS:

AS AN ALTERNATIVE TO PROVIDING THE GRAVEL "CHIMNEY" AT THE EXTERIOR WALL, A PREFABRICATED DRAINAGE BOARD, SUCH AS MIRADRAIN 6000, MAY BE PLACED AGAINST THE FOUNDATION WALL AND BACKFILLED WITH ORDINARY FILL. THE MIRADRAIN 6000 SHOULD BE TIED DIRECTLY INTO THE CRUSHED STONE ENVELOPE SURROUNDING THE PERIMETER DRAIN. SHOULD A PREFABRICATED DRAINAGE STRUCTURE BE UTILIZED, THE PERIMETER WALLS MAY BE BACKFILLED WITH THE ON-SITE ORDINARY FILL.

THE UNDERSLAB DRAINAGE SYSTEM SHOULD CONSIST OF A NETWORK OF 4-INCH PERFORATED PVC PIPES EMBEDDED WITHIN THE 9-INCH THICK LAYER OF CRUSHED 3/4-INCH CRUSHED STONE. THE PVC PIPES SHOULD BE LOCATED APPROXIMATELY 40 FEET ON CENTER AND PITCHED AT A 0.5 PERCENT SLOPE IN THE DIRECTION OF FLOW. THE PERIMETER AND UNDERSLAB DRAINS SHOULD BE SEPARATE AND GRAVITY DRAINED TO A STORM DRAIN LINE WHICH IS NOT SUBJECT TO SURCHARGE."
1. REFER TO GRADING AND DRAINAGE PLANS FOR ADDITIONAL INFORMATION.

2. REFER TO SHEET G-1 FOR GENERAL NOTES AND LEGEND.

NOTE:

/-g120 BEHIND PREVIOUS SURFACES PROVIDE 4' (MIN.) COVER OVER SEWER PIPE

/-g120 BEHIND PAVED SURFACES PROVIDE 6' (MIN.) COVER OVER SEWER PIPE

INSTALL 2" RIGID FOAM INSULATION ABOVE SEWER PIPE WHERE COVER IS DEFICIENT

NOTE:

/g120
NOTES:
1. REFER TO GRADING AND DRAINAGE PLANS FOR ADDITIONAL INFORMATION.
2. REFER TO SHEET G-1 FOR GENERAL NOTES AND LEGEND.
3. SMH-1 TO BE CAPPED AND FILLED BELOW PROPOSED GROUND SURFACE ONCE EXISTING BUILDING IS OFF-LINE.

NOTE:
/g120 BENEATH PERVIOUS SURFACES PROVIDE 4' (MIN.) COVER OVER SEWER PIPE
/g120 BENEATH PAVED SURFACES PROVIDE 6' (MIN.) COVER OVER SEWER PIPE
INSTALL 2" RIGID FOAM INSULATION ABOVE SEWER PIPE WHERE COVER IS DEFICIENT
NOTES:

1. THIS PLAN IS NOT INTENDED TO SHOW PERMANENT DRAINAGE DESIGNS AND TO BE USED FOR TEMPORARY EROSION AND SEDIMENT CONTROL ONLY.

2. CONTRACTOR TO GRADE ACTIVE EXCAVATION AREAS TO ALLOW MAXIMUM INFILTRATION OF STORMWATER AND MINIMIZE RUNOFF FROM DISTURBED AREAS.

3. DISTURBANCES OF AREAS TO BE MINIMIZED. NO DISTURBED AREA SHALL BE LEFT UNSTABILIZED FOR LONGER THAN TWO WEEKS DURING THE GROWING SEASON. AREAS WHICH WILL NOT BE PERMANENTLY SEEDED WITHIN TWO WEEKS OF DISTURBANCE SHALL BE TEMPORARILY SEEDED AND MULCHED. ALL AREAS SHALL BE STABILIZED WITH SEED AND MULCH AND TACKIFIER WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE AND PRIOR TO THE END OF THE GROWING SEASON.

4. FOR FURTHER INFORMATION ON BEST MANAGEMENT PRACTICES SEE COMPLETE PLAN SET AND STORMWATER POLLUTION PREVENTION PLAN (SWPPP) FOR THIS PROJECT PREPARED BY NOBIS ENGINEERING, INC., (DATE).

5. REFER TO GENERAL NOTES AND LEGEND SHEET FOR ADDITIONAL EROSION CONTROL NOTES AND CONSTRUCTION SEQUENCE.
NOTES:

1. THIS PLAN IS NOT INTENDED TO SHOW PERMANENT DRAINAGE DESIGNS AND TO BE USED FOR TEMPORARY EROSION AND SEDIMENT CONTROL ONLY.

2. CONTRACTOR TO GRADE ACTIVE EXCAVATION AREAS TO ALLOW MAXIMUM INFILTRATION OF STORMWATER AND MINIMIZE RUNOFF FROM DISTURBED AREAS.

3. DISTURBANCES OF AREAS TO BE MINIMIZED. NO DISTURBED AREA SHALL BE LEFT UNSTABILIZED FOR LONGER THAN TWO WEEKS DURING THE GROWING SEASON. AREAS WHICH WILL NOT BE PERMANENTLY SEEDED WITHIN TWO WEEKS OF DISTURBANCE SHALL BE TEMPORARILY SEEDED AND MULCHED. ALL AREAS SHALL BE STABILIZED WITH SEED AND MULCH AND TACKIFIER WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE AND PRIOR TO THE END OF THE GROWING SEASON.

4. FOR FURTHER INFORMATION ON BEST MANAGEMENT PRACTICES SEE COMPLETE PLAN SET AND STORMWATER POLLUTION PREVENTION PLAN (SWPPP) FOR THIS PROJECT PREPARED BY NOBIS ENGINEERING, INC., (DATE).

5. REFER TO GENERAL NOTES AND LEGEND SHEET FOR ADDITIONAL EROSION CONTROL NOTES AND CONSTRUCTION SEQUENCE.

6. REFER TO INTERIM CONSTRUCTION PHASING PLANS FOR MORE DETAILED EROSION CONTROL METHODS THROUGHOUT CONSTRUCTION PROCESS.
NOTES:
1. THIS PLAN IS NOT INTENDED TO SHOW PERMANENT DRAINAGE DESIGNS AND TO BE USED FOR TEMPORARY EROSION AND SEDIMENT CONTROL ONLY.

2. CONTRACTOR TO GRADE ACTIVE EXCAVATION AREAS TO ALLOW MAXIMUM INFILTRATION OF STORMWATER AND MINIMIZE RUNOFF FROM DISTURBED AREAS.

3. DISTURBANCES OF AREAS TO BE MINIMIZED. NO DISTURBED AREA SHALL BE LEFT UNSTABILIZED FOR LONGER THAN TWO WEEKS DURING THE GROWING SEASON. AREAS WHICH WILL NOT BE PERMANENTLY SEEDED WITHIN TWO WEEKS OF DISTURBANCE SHALL BE TEMPORARILY SEEDED AND MULCHED. ALL AREAS SHALL BE STABILIZED WITH SEED AND MULCH AND TACKIFIER WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE AND PRIOR TO THE END OF THE GROWING SEASON.

4. FOR FURTHER INFORMATION ON BEST MANAGEMENT PRACTICES SEE COMPLETE PLAN SET AND STORMWATER POLLUTION PREVENTION PLAN (SWPPP) FOR THIS PROJECT PREPARED BY NOBIS ENGINEERING, INC., (DATE).

5. REFER TO GENERAL NOTES AND LEGEND SHEET FOR ADDITIONAL EROSION CONTROL NOTES AND CONSTRUCTION SEQUENCE.

6. REFER TO INTERIM CONSTRUCTION PHASING PLANS FOR MORE DETAILED EROSION CONTROL METHODS THROUGHOUT CONSTRUCTION PROCESS.
SIGN SUMMARY

SILT FENCE INSTALLATION

EROSION CONTROL MATTING

SPECIFICATIONS FOR TEMPORARY AND PERMANENT SEEDING:

GRASS SEED MIXES SHALL CONSIST OF THE MIXTURES AS DETAILED IN THE FOLLOWING TABLES, WITH 98% PURITY:

<table>
<thead>
<tr>
<th>SEED</th>
<th>BY % MASS</th>
<th>% GERMINATION (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINTER RYE 80 (MIN.)</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>PERENNIAL RYE GRASS</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>RED CLOVER</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>OTHER CROP GRASS</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>NOXIOUS WEED SEED</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>INERT MATTER</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>RED FESCUE (CREEPING)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

EROSION CONTROL SEED MIX

<table>
<thead>
<tr>
<th>SEED</th>
<th>BY % MASS</th>
<th>% GERMINATION (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KENTUCKY BLUE</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>PERENNIAL RYE GRASS</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>RED TOP</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>LANDINO CLOVER</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>RED FESCUE (CREEPING)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

PERMANENT SEED MIX

<table>
<thead>
<tr>
<th></th>
<th>25</th>
<th>10</th>
<th>10</th>
<th>5</th>
<th>85</th>
<th>85</th>
</tr>
</thead>
</table>

BIORETENTION DETAIL

BIORETENTION SYSTEM

OUTLET STRUCTURE SECTION

RIP RAP OUTLET PROTECTION APRON
PROPOSED LAYOUT - INFILTRATION GALLERY

(84) STORMTECH MC-3500 CHAMBERS
(24) STORMTECH MC-3500 END CAPS
INSTALLED WITH 12" COVER STONE, 9" BASE STONE, 40% STONE VOIDS

PROPOSED ELEVATIONS
MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED): 95.50
MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): 90.00
MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): 89.50
TOP OF STONE: 88.50
TOP OF CHAMBER: 87.50
15" TOP MANIFOLD INVERT: 85.70
24" TOP MANIFOLD INVERT: 84.96
24" ISOLATOR ROW INVERT: 83.92
BOTTOM OF CHAMBER: 83.75
BOTTOM OF STONE: 83.00

ISOLATOR ROW
PLACE MINIMUM 17.5' OF ADS GEOSYNTHETICS 315WTM WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

15" X 15" ADS N-12 MANIFOLD
PART# MC3500IEPP15T
INV 23.39" ABOVE CHAMBER BASE

24" CORED END CAP
PART# MC3500IEPP24B
TYP OF ALL MC-3500 ISOLATOR ROWS

ISOLATOR ROW
DMH11
CB6
GALLERY #2

PROPOSED LAYOUT - DETENTION GALLERY

(40) STORMTECH MC-3500 CHAMBERS
(10) STORMTECH MC-3500 END CAPS
INSTALLED WITH 12" COVER STONE, 9" BASE STONE, 40% STONE VOIDS

PROPOSED ELEVATIONS
MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED): 100.50
MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): 95.00
MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): 94.50
TOP OF STONE: 93.50
TOP OF CHAMBER: 92.50
12" TOP MANIFOLD INVERT: 90.95
12" BOTTOM MANIFOLD INVERT: 88.86
24" ISOLATOR ROW INVERT: 88.92
BOTTOM OF CHAMBER: 88.75
BOTTOM OF STONE: 88.00

PLACE MINIMUM 17.5' OF ADS GEOSYNTHETICS 315WTM WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

12" X 12" ADS N-12 MANIFOLD
PART# MC3500IEPP12T
INV 26.36" ABOVE CHAMBER BASE

24" CORED END CAP
PART# MC3500IEPP24B
TYP OF ALL MC-3500 ISOLATOR ROWS

INSPECTION PORT
DMH 17
DMH18
12" X 12" ADS N-12 MANIFOLD
PART# MC3500IEPP12B
INV 1.35" ABOVE CHAMBER BASE

GALLERY #1

DMH12
15" X 15" ADS N-12 MANIFOLD
PART# MC3500IEPP15T
INV 23.39" ABOVE CHAMBER BASE

24" X 24" ADS N-12 MANIFOLD
PART# MC3500IEPP24T
INV 14.48" ABOVE CHAMBER BASE
1. SEE COVER SHEET FOR ADDITIONAL NOTES PERTAINING TO THE PROJECT.
2. EXISTING CONDITIONS, TOPOGRAPHICAL INFORMATION, NORTH ORIENTATION, NORTH ARROW, AND COORDINATE VALUES DEPICTED ON THESE DRAWINGS ARE BASED ON PLANS TITLED "DOVER HIGH SCHOOL & REGIONAL CAREER TECHNICAL CENTER", DATED FEBRUARY 23, 2015, PROVIDED TO NOBIS ENGINEERING, INC. BY SEBAGO TECHNICS, INC.
3. GRADES AT VARIOUS STAGES OF CONSTRUCTION SHALL BE VERIFIED AND CERTIFIED BY A NEW HAMPSHIRE REGISTERED SURVEYOR. COPIES SHALL BE PROVIDED TO THE SCHOOL FOR APPROVAL PRIOR TO PROCEEDING WITH THE NEXT ACTIVITY.
4. ELEVATIONS SHALL BE TAKEN AT 25' INTERVALS IN A GRID PATTERN. THE AVERAGE ELEVATION IS TO BE NO HIGHER THAN 0.1' ABOVE THE DESIGN ELEVATION.
5. THE TURF MANUFACTURER SHALL PROVIDE FIELD MARKINGS AS SPECIFIED BY THE SCHOOL.
6. PRIOR TO COMPLETION, THE CONTRACTOR SHALL CLEAN ALL THE MONITORING WELLS.
7. ALL HDPE PIPE SHALL BE N-12.
8. TRACK TO BE STRIPED PER NFHS STANDARDS.
9. THE TURF MANUFACTURER SHALL PROVIDE 2 SIGNS AT EACH GATE LOCATION INTO THE TRACK. THE SIGNS SHALL BE MAXIMUM OF 18"X24". ONE SIGN SHALL SPECIFY RESTRICTION OF USE THAT THE MANUFACTURER REQUIRES TO MAINTAIN THE WARRANTY AND THE OTHER SIGN SHALL STATE ANY HEALTH CONCERNS TO BE POSTED FOR SYNTHETIC TURF FIELDS. THE EXACT WORDING OF THE SIGNS SHALL BE DETERMINED DURING CONSTRUCTION. TURF MANUFACTURER SHALL SUBMIT SAMPLE TO SCHOOL FOR APPROVAL PRIOR TO INSTALLATION. THE SIGNS SHALL BE WEATHERPROOF AND FASTENED TO THE PERMANENT CHAIN LINK FENCE WITH RUST PROOF HARDWARE.
PLAN REFERENCES:
1. SEE COVER SHEET FOR ADDITIONAL NOTES PERTAINING TO THIS PROJECT
2. EXISTING CONDITIONS, TOPOGRAPHICAL INFORMATION, NORTH ORIENTATION, NORTH ARROW, AND COORDINATE VALUES DEPICTED ON THESE DRAWINGS ARE BASED ON PLANS TITLED "DOVER HIGH SCHOOL & REGIONAL CAREER TECHNICAL CENTER", DATED FEBRUARY 23, 2015, PROVIDED TO NOBIS ENGINEERING, INC. BY SEBAGO TECHNICS, INC.

DRAWN BY:
CHECKED BY:
DATE:
REMARKS
GENERAL GRADING NOTES

1. DRAWN DIRECTLY TO ELEVATION, NO TOLERANCE ALLOWED. A REVISION TO DEMANDS AND Chlorinated Solvents as determined by the project engineer. The contractor is responsible for determining the final grading of the site. ELEVATIONS OF ALL POINTS ARE GIVEN IN FEET AND INCHES WITH A PRECISION OF ±1⁄8". THE CONTRACTOR IS TO PROVIDE A SURVEYED GRADE PLAN TO THE PROJECT ENGINEER FOR APPROVAL OF THE FINAL GRADE PLAN. GRADES AND ELEVATIONS ARE NOT TO BE ALtered WITHOUT WRITTEN APPROVAL FROM THE PROJECT ENGINEER.

2. ALL GRADES AND ELEVATIONS ARE TO BE ENSURED TO PROVIDE A STABLE AND LEVEL SURFACE THAT WILL NOT CAUSE DAMAGE TO ANY EXISTING STRUCTURES OR ELEVATIONS.

3. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.

4. ALL GRADES AND ELEVATIONS ARE TO BE SURVEYED AND ACCURATE TO THE NEAREST 1/8".

5. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.

6. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.

7. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.

8. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.

9. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.

10. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL GRADES AND ELEVATIONS ARE ACCURATE AND MEET THE REQUIREMENTS OF THE CONTRACT.
PLANTING LIST

<table>
<thead>
<tr>
<th>Number</th>
<th>Desc.</th>
<th>Qty</th>
<th>Size</th>
<th>Species</th>
<th>Note</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acacia dealbata 'Luther'</td>
<td>106</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acacia dealbata 'Luther'</td>
<td>153</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Acacia dealbata 'Luther'</td>
<td>103</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Acacia dealbata 'Luther'</td>
<td>127</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Acacia dealbata 'Luther'</td>
<td>117</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acacia dealbata 'Luther'</td>
<td>108</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Acacia dealbata 'Luther'</td>
<td>112</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Acacia dealbata 'Luther'</td>
<td>109</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Acacia dealbata 'Luther'</td>
<td>111</td>
<td>5</td>
<td>3</td>
<td>3 cm</td>
<td></td>
</tr>
</tbody>
</table>

KEYPLAN

[Key Plan Image]
CODE REVIEW

MINIMUM WIDTH OF CORRIDORS (NFPA14.2.3.2)

CORRIDOR DIMENSIONS

- FOUNDATION: CAST-IN-PLACE PERIMETER WALL & COLUMN
- ROOF: METAL DECK

SPRINKLER INCREASE (IBC 504.2)

STREET FRONTAGE INCREASE (IBC 506.2) @ 75%

PARTITION

TABULAR AREA (IBC TABLE 503) UNLIMITED

ACTUAL AREA - BUILDING 1: 76,010

MEANS OF EGRESS (SEC. 16.1)

MEANS OF EGRESS (SEC. 16.5)

GROUND FLOOR PLAN

GSF GROSS SQUARE FOOTAGE

SHOPS

MAXIMUM LENGTH OF DEAD END

ACTUAL HEIGHT

ONE INTERVENING ROOM UNDER THE FOLLOWING CONDITIONS:

100% CONFORMED SET - FOR CONSTRUCTION 9/12/2016

2 of 5

306 STORAGE

395 OCC

176 sf

ALLOW: 395 OCC

ACTUAL: 378 OCC

ACTUAL DOOR SIZE

ACCORDING TO USE & OCCUPANCY (NFPA 2009)

— CONNECTING LESS THAN 4 STORIES

EGRESS REQUIREMENTS AND ENERGY-CODE REQUIREMENTS.

GYM

CHAIRS AND TABLES

1/2 OCC EGRESS
ANCHOR, SET IN A 078400.05 PERIMETER ANGLE
FRAMING
122400.05 WINDOW SHADES
075300.04 TAPERED INSULATION
260000.44 DOOR INTERCOM
076200.01 METAL ROOFING
092900.36 5/8" TILE BACKER BOARD
051200.04 STEEL ANGLE
SEALANT
AND RISERS
075300.08 MEMBRANE BASE FLASHING
064020.11 1/2" PLYWOOD
052300.41 5/8" CEIL BOARD
067300.01 3/4" CEIL BOARD
1) REFER TO SHEET A8.2 FOR TYPICAL TILE INSTALLATION DETAILS.