

What Does Algae Have To Do With It?

- The photosynthetic cyanobacteria, A.K.A. blue-green algae, constitute a major component of the photoplankton and are discussed throughout this treatment as functionally similar to planktonic algae
- Algae and cyanobacteria are found in all bodies of water in non-detrimental amounts.

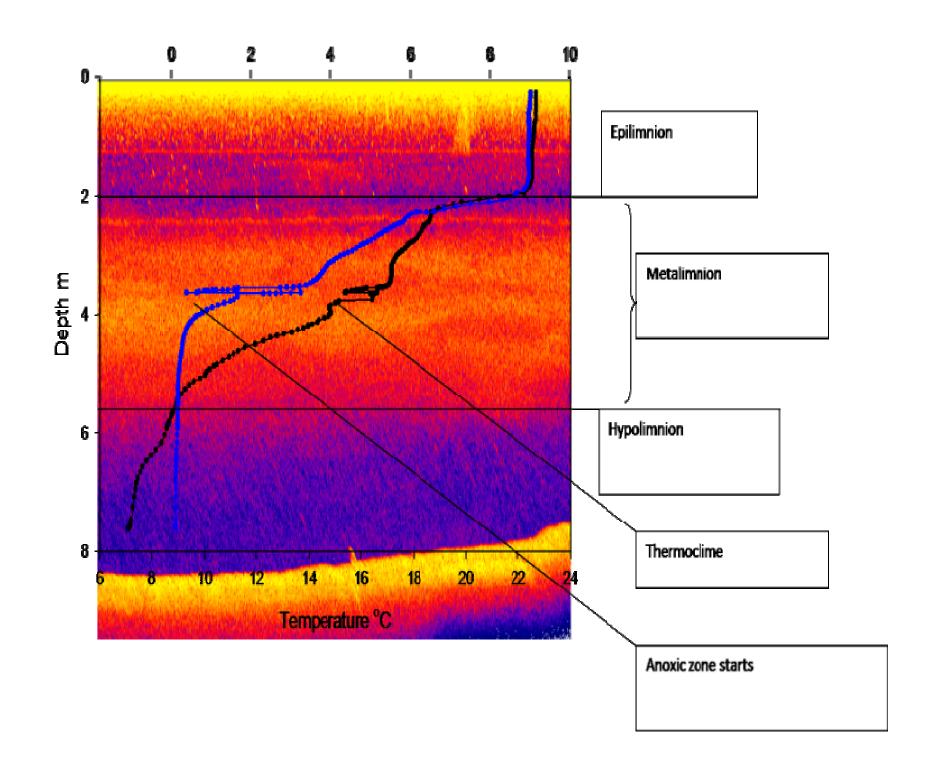
Basic Algal Information

- Simple prokaryote cell
- Occur in unicellular, filamentous, and colonial forms
- Green algae are almost totally freshwater in distribution
- Generally reproduce asexually, vegetatively
 - Occurs mostly at night
- Production controlled through water temperature, light, nutrients (particularly P), residence time, and predator activity

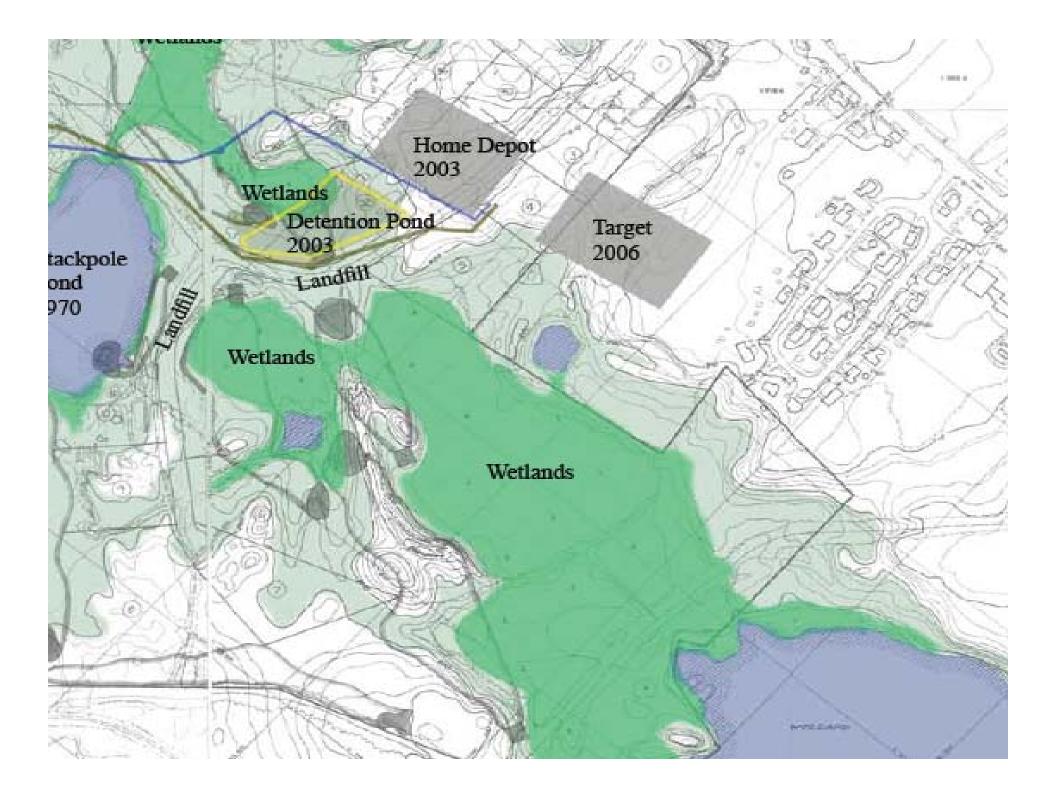
What Does This Mean For You?

- Algae is becoming a nuisance
 - Water discoloration and scum formation
 - Filamentous mats can form at the bottom and float to the surface
 - You don't know there is a high quantity until its at the surface
 - Poor taste and odor of the water
 - Toxins kill animals and cause illness in humans
 - Combination of algal organic matter and chlorine disinfectant can form potential carcinogenic byproducts

Your Health


- Health effects associated with exposure to high concentrations of cyanobacterial toxins include:
 - stomach and intestinal illness;
 - trouble breathing;
 - allergic responses;
 - skin irritation;
 - liver damage; and
 - neurotoxic reactions, such as tingling fingers and toes
- Scientists are exploring the human health effects associated with long-term exposure to low levels of cyanobacterial toxins. Some studies have suggested that such exposure could be associated with chronic illnesses, such as liver cancer and digestive-system cancer.

								1
Depth	0.5	1.5	2.5	3.5	4.5	5.5	6.5	Species Total counts
Anabaena	3	3	4	14	7	2		33
Aphanocapsa	50	15			4			69
Coelosphaerium	51		51		7		3	112
Microcystis	100	33	34	100		71	2	340
Tabelllaria		1						1
Asterionella							1	1
Oscillatoria	1			100	72	24		197
Mallomonas						1	1	2
Melosira					2			2
Dinobryon	2		1					3
Synura	1							1
Ceratium	100	34	100		1	1		236
Pediastrum	1	1						2
Staurastrum	50	10	20	46	7		1	134
Total counts	359	97	210	260	100	99	8	1153


Willand Pond's Sources of

How Willand Pond's Morphometry affects Phosphorus

Phosphorus Data (µg L⁻¹)

September 2007

Sample was taken at deepest spot in the lake 3m below the surface

April 2008

- Staples drain: 193.
- Shore (Behind Staples drain) 84.3

23.4

- Boat Lagach Shore:
- Behind Retention Pond: 569.2

Solutions for Willand Pond:

•Need a formal monitoring program involving residents, lakes association and coordination with state biologists.

•Gather more data on lake natural nutrient cycling

• VLAP with NH DES

•NH LLMP with the University of New Hampshire

•Physical changes or treatments possibly needed for Willand Pond:

•Alum treatment

•Selective draining

- •Construction of an outlet
- Decreasing external phosphorus sources
- •Hvnnlimnetic seration or ovvaenation

NH VLAP:

- Volunteer Lakes Assessment Program (VLAP) through NH DES.
 - Program serves a dual purpose by establishing a regular volunteer-driven lake sampling program to assist DES in evaluating lake quality throughout the state, and by empowering volunteer monitors and lake residents with information about the health of their waterbody.
 - Usually done several times on a monthly basis throughout the summer months (June-August).
 - Environments monitored: Groundwater, Lake or Pond, Land, Reservoir, River or Stream, Wetland
 - Data is interpreted and compiled into a report for each lake.

NH VLAP Sampling and Testing:

- Environments monitored:
 - Lake or Pond, Land, and Reservoirs.
 - Physical/chemical monitoring:
 - Conductivity, Alkalinity, pH, Phosphorus, Secchi transparency, and Turbidity.
 - Biological monitoring:
 - Bacteria, and Chlorophyll.

NH LLMP:

- New Hampshire Lakes Lay Monitoring Program (LLMP) through the University of New Hampshire.
 - Program dedicated to preservation and sound management of lakes through citizen-based monitoring and research.
 - Founded in 1978, LLMP is administered jointly through the Cooperative Extension and the Center for Freshwater Biology at the University of New Hampshire.
 - Provides better view of overall system health by using more extensive testing and sampling.
 - Through its integration of research, outreach and teaching, the LLMP provides valuable data on the lakes of New Hampshire, broad community service and a unique opportunity for hands-on learning and employment of students.