CITY OF DOVER TRANSPORTATION COMPONENT - MASTER PLAN

FINAL REPORT
TECHNICAL MEMORANDUM NO. 2 CENTRAL AVENUE CORRIDOR STUDY

Prepared for:

THE CITY OF DOVER, N.H. DEPARTMENT OF PLANNING AND COMMUNITY DEVELOPMENT

JULY, 1988

by:

in association with:

CITY OF DOVER TRANSPORTATION COMPONENT - MASTER PLAN

FINAL REPORT
TECHNICAL MEMORANDUM NO. 2 CENTRAL AVENUE CORRIDOR STUDY

Prepared for:

THE CITY OF DOVER, N.H. DEPARTMENT OF PLANNING AND COMMUNITY DEVELOPMENT

JULY, 1988
by:
in association with:

FREDETTE ASSOCIATES INC.
PROFESSIONAL ENGINEERS AND LAND SURVEYORS
P.O. Box 644, Salem, New Hampshire 03079

Tel. (603) 893-7497

TABLE OF CONTENTS

Page
LIST OF TABLES ii
LIST OF FIGURES iii
I. INTRODUCTION 1
A. Background 1
B. Methodology 1
C. Other Studies 2
D. Acknowledgements 3
II. CORRIDOR CHARACTERISTICS 4
A. Study Area Roadways 4
B. Present Roadway Facility 4
C. Traffic Volumes 7
D. System Deficiencies 8
III. ORIGIN-DESTINATION STUDY 9
A. Overview and Findings 9
B. Study Design 9
C. Data Analysis 11
IV. CORRIDOR IMPROVEMENT ALTERNATIVES 17
A. Central Avenue Widening 17
B. One Way Circulation Pattern 19
C. New Bypass Roadway 20
V. COMPARISON OF ALTERNATIVES 22
A. Procedure 22
B. Traffic Levels of Services 22
C. Findings 23
VI. RECOMMENDATIONS 28APPENDIX A Traffic Count Data SummariesAPPENDIX B Traffic Capacity Analyses

LIST OF TẢBLES

No.	Title	Page
1	Traffic Count Data Sources	7
2	Origin - Destination Study Travel Time Between Nodes	12
3	Origin - Destination Study Total Plate Count by Node	13
4	Origin - Destination Study Summary of Non-Matched Plate Numbers by Node	14
5	Origin - Destination Study Summary of Matching Plate Numbers	15
6	Origin - Destination Study Summary of Multiple Matched Plate Numbers	16
7	Level of Service Criteria for Signalized Intersections	23
8	Alternative Comparison Summary Maintain Present Roadway Facility	24
9	Alternative Comparison Summary Widened Central Avenue	25
10	Alternative Comparison Summary One - Way Circulation	26

LIST OF FIGURES

No.	Title	Page
1	Location Map	5
2	Present Roadway Facility, 1993 Peak Hour Conditions	6
4	Origin - Destination Study Central Avenue Corridor Study Widened Central Avenue, 1993 Peak Hour Conditions	10
5	One - Way Circulation, 1993 Peak Hour Conditions	18

I. Introduction

A. Background

In January, 1988, the City of Dover retained the consulting firms of Storch Associates of Manchester, New Hampshire and Fredette Associates, Inc. of Salem, New Hampshire to provide technical input into the Transportation Component of the 1988 Master Plan. This technical input may be expressed in the following task objectives:

Task 1. Identify existing conditions and recommend improvements for twelve problem intersection locations.

Task 2. Investigate options for improving traffic flow in the downtown Central Avenue Corridor, including land widening, one-way circulation pattern, or new bypass roadway.

Task 3. Identify long range highway improvement needs for the Route 9 Corridor in the City of Dover per major industrial rezoning proposed in the Master Plan.

This Technical Memorandum No. 2 - Central Avenue Corridor Study documents the results of Task 2 of the Transportation Component.

This study of the Downtown segment of the corridor completes a comprehensive, long term transportation plan for the entire Central Avenue corridor in conjunction with a 1987 study of the southern portion of the corridor (south of Silver Street) and a 1984 study of the northern portion of the corridor (Oak Street through Weeks Circle).

B. Methodology

Technical Memorandum No. 2 - Central Avenue Corridor Study, evaluates alternative roadway network improvements to the Central Avenue corridor through the downtown area of the City of Dover. The objective of this study is to develop a recommendation for corridor improvements which will both mitigate existing deficiencies in downtown traffic flow, as well as provide for the transportation needs of future traffic growth in the City.

The study area includes the downtown segment of the Central Avenue corridor from Oak Street to just south of Silver Street. This area is illustrated in Figure 1 along with the three primary alternatives evaluated:

1. Central Avenue Widening to provide at least two northbound and two southbound travel lanes along the corridor.
2. One Way Circulation Pattern utilizing the present facilities of Central Avenue, Chestnut Street and Locust Street to form a one way circulation loop carrying at least two travel lanes per direction.
3. New Bypass Roadway constructed along a presently available railroad right-of-way around the western side of the downtown area.

An inventory was made of the present corridor roadway facilities including traffic lanes, roadway widths, curbside parking, and one-way restrictions. Traffic count data at key intersections was collected during the peak traffic period and supplemented by counts reported in recent traffic studies. A 1993 "No-Build" design condition was projected and used as a base condition by which the alternative corridor improvements were compared.

An Origin-Destination study was also conducted to define the use of this downtown corridor segment as both a through route and a radial corridor servicing local downtown trip making. This study was highlighted by a license plate survey whereby each vehicle entering or leaving the downtown area on any of eight major routes was "tracked" through the downtown corridor as either a "downtown-based" or a "non-stopping through" trip.

The corridor alternatives are compared in both quantitative terms (volumes, level of service, parking, delays and cost) and qualitative terms (neighborhood street traffic and access to public transportation).

The preliminary findings and recommendations of this study task were presented to the City of Dover Transportation Committee on April 28, 1988. This Final Report reflects the input provided by the Committee at that time.

C. Other Studies

This study has made use of traffic data from the following sources:

Reference 1. Peak hour traffic counts conducted by the City of Dover in 1988.
Reference 2. Peak hour traffic counts conducted by Strafford Regional Planning Commission in 1986.

Reference 3. "An Analysis of the N.H. Route 108 Corridor in Dover, New Hampshire", by Strafford Regional Planning Commission, December 1987.
Reference 4. "Traffic Impact Study for the Dover Mills Residential Development, Dover, New Hampshire", by Costello, Lomasney \& deNapoli, Inc., November 1987.
Reference 5. "Central Avenue Corridor Traffic Study, Dover, New Hampshire", by Wilbur Smith and Associates, Inc., January 1984.

D. Acknowledgements

We would like to acknowledge the advice and assistance provided by the following departments and organizations:

- City of Dover Department of Planning and Community Development.
- City of Dover Department of Public Works.
- City of Dover Department of Public Safety.
- City of Dover Transportation Committee and involved citizens.
- Strafford Regional Planning Commission.
- New Hampshire Department of Transportation, Bureau of Transportation Planning.

Special acknowledgement is given to the Planning Department staff, participants from the Department of Public Safety, Planning Board, and Strafford Regional Planning Commission, and others, for their conscientious and dedicated efforts in recording the license plate number, time and direction of over 20,000 vehicles entering and leaving the downtown area on a chilly February afternoon.

II. Corridor Characteristics

A. Study Area Roadways

The study area is illustrated in Figure 1 and includes these three primary routes:

1. Central Avenue from Oak Street to just south of Silver Street, including the Main Street loop;
2. Chestnut Street from Central Avenue to Washington Street; and
3. Locust Street from Washington Street (and Walnut Street) to just south of Silver Street.

Additional key roadway segments included Sixth Street, Broadway, Portland Avenue, Portland Street, Washington Street, Silver Street, and N.H. Route 108.

B. Present Roadway Facility

An inventory of physical roadway features and traffic control on selected corridor segments and key intersections is depicted in Figure 2. Indicated are the following:

- Paved roadway width (curb-to-curb)
- Number of through traffic lanes in each direction (exclusive turn lanes not included)
- One-way streets
- Traffic signals
- Number, type and location of designated curbside parking spaces.

Central Avenue is the primary arterial route through the City of Dover. It services both the central core and outer business districts of the City. It generally provides one through travel lane in each direction with designated curbside parking on each side. In the central core area between Broadway and Washington Street, the corridor splits into a one-way street loop with two through travel lanes in each direction: Central Avenue for southbound flow; and Main Street for northbound flow. This area comprises the retail/commercial core of the downtown area and has been recently renovated with landscaped sidewalk and curbside parking facilities.

Chestnut Street functions both as a bypass of Central Avenue and as the primary service route for the outer business district just west of the downtown core area. It is a recently reconstructed four lane roadway between Washington Street and approximately First Street. North to Central Avenue it generally provides one through travel lane in each direction.

Locust Street also functions as a bypass route of Central Avenue. It is a local collector route through a primarily residential area, with an increased density of institutional (City of Dover) land use near its northern terminus near Washington Street and an increased density of light industrial uses near its southern terminus with Central Avenue (Route 108).

The C.L. Railroad right-of-way is an abandoned one-track facility which begins as a spur from the Boston and Maine Railroad tracks near Chestnut and Third Streets, crosses Washington Street at grade, crosses under Silver Street, and terminates at the Central Avenue (NH Route 108) intersection at Cataract Street in the vicinity of the Spaulding Turnpike overpass.

C. Traffic Volumes

As was established in "Technical Memorandum No. 1, Problem Intersection Locations" the weekday PM peak hour was selected as the critical design hour condition for corridor evaluation. Present peak traffic conditions in the study area were defined by either new or previously conducted traffic counts at the intersections outlined in Table 1. Corresponding turning movement diagrams and count summaries are included in Appendix A.

TABLE 1

TRAFFIC COUNT DATA SOURCES

Intersection	Source*	Date/Time Period
Central at Oak	2	06/23/86, 3:30-4:30 PM
Central at Broadway	1	04/07/88, 3:30-5:30 PM
Chestnut at Sixth	1	03/02/88, 3:30-5:30 PM
Chestnut at Washington	1	03/03/88, 3:30-5:30 PM
Washington at Locust	1	02/24/88, 3:30-5:30 PM
Central at Main \&		
Portland Avenue	4	1990 PM Peak Hour
Central at Washington	4	1990 PM Peak Hour
Main at Portland Street	4	1990 PM Peak Hour
Central at Silver	3	1993 PM Peak Hour
Locust at Silver	3	1993 PM Peak Hour
Central at NH 108/16	3	1993 PM Peak Hour
NH 108 at Locust/		
Spaulding Ramp	3	1993 PM Peak Hour
NH 108 at Mill/		
Spaulding Ramp	3	1993 PM Peak Hour
erence (per Section I-C.)		
1. City of Dover count (See Appendix A)		
2. Strafford Regional Planning Commission count (See Appendix A)		
3. NH 108 Corridor Study (SRPC), 1987 (See Appendix A)		
4. Traffic Impact Study (See Appendix A)	over Mills	Lomasney \& deNapoli, 1987

Design year traffic projects for the study area roadway network were projected from this data base utilizing the peak period traffic growth rate of 3.5 percent per year and seasonal adjustment factors documented in Technical Memorandum No. 1. The resulting 1993 design hour volumes along key segments of the corridor are illustrated on Figure 2.

D. System Deficiencies

The primary problem with the present Central Avenue corridor is a deficiency in the capacity of the overall two-lane facility to handle presently heavy corridor flows. Through traffic flow is additionally delayed by uncoordinated signalization and turning movements to and from side streets and driveways and parking traffic maneuvers. The limitations on Central Avenue capacity can also be evidenced, indirectly, by the heavy volume of traffic now utilizing the parallel Chestnut and Locust Streets as alternate routes. These routes now carry volumes ranging from 40 to 70 percent of the peak hour flows along Central Avenue.

Other localized problem areas which contribute to the present deficiencies in corridor traffic flow include:

- Delays for Broadway traffic approaching Central Avenue (presently signalized).
- Delays for Chestnut Street traffic approaching Central Avenue northbound (presently stop sign controlled).
- Delays for Locust Street traffic approaching Washington Street (presently stop sign controlled).
- Delays for Silver Street traffic approaching Central Avenue (presently signalized).
- Delays for Central Avenue traffic at the Main Street intersection (presently signalized).

III. Origin - Destination Study

A. Overview and Findings

An Origin - Destination (O-D) Study of the traffic into and through the downtown district of the City of Dover was completed as a part of this report. The O-D study was designed to provide additional information on the characteristics of Central Avenue Corridor traffic. Specifically, this study was to determine how the traffic funnelled through the downtown area of Dover. Also determined were presence of any commonly traveled routes through downtown for which a bypass or connector road might reduce the number of cars that now use the downtown streets only to get through the area to another destination.

The evaluation of the data that was collected in the O-D Study shows conclusively that the downtown district of Dover is more of a traffic generator than it is a funnel through which cars must travel to another destination. The analysis of the data collected shows that 70 percent of the traffic entering and leaving the downtown district were going to or coming from a destination within the downtown area.

The second highest frequency of occurrence were cars that had entered the downtown and were exiting the study area via Central Avenue northbound. This movement accounted for 15 percent of the cars. A presumptive conclusion is that many of these cars had a destination of the hospital district or the Central Avenue shopping district (the so called Miracle Mile) north of the hospital.

B. Study Design

The O-D Study was designed to analyze traffic to and through the downtown area of Dover. The area selected is generally characterized as the area east of the Spaulding Turnpike bounded on the south by the Exit 6/Central Avenue area and on the north by the Oak Street/Central Avenue intersection. The study was designed to capture all of the cars that entered and departed from this area via the main roads. The count locations that cordoned off the downtown area (or Nodes as they are referred to) are described below and graphically represented on Figure 3.

Node

Description

Stark Avenue south of Woodland Road Central Avenue north of Locust Street Locust Street north of Central Avenue Knox Marsh Road (Silver Street) west of Arch Street Sixth Street west of Whittier Street
Central Avenue south of Oak Street
Broadway south of Oak Street
Portland Street just south of City Limits

On the afternoon of February 10, 1988 two to four people were assigned to each of the Nodes from approximately 2:00 PM to 5:30 PM. During this time they recorded the first three digits of each license plate that passed through their Node. The 3 digit license plate numbers were grouped into 15 minute blocks of time and the direction of travel, inbound or outbound was recorded.

After the license plate data was collected, all of the incoming plate numbers for each Node within a 15 minute period were compared with the outbound data from each Node. The matched plate numbers were to show the general pattern of traffic flow through the downtown district of Dover.

C. Data Analysis

All of the collected license plate data from the O-D Study was compiled as described above with the help of a computer. In the first review of this data, there appeared to be over a 120 percent match of outbound cars with the inbound cars. Based on the review of this data it was determined that because the study area was so large there were too many vehicles to be compared in 15 minute blocks as anticipated. In effect, there was a better statistical probability of a random match of a 3 digit number than there was of matching the actual car that was recorded.

This initial analysis of the data left no opportunity to draw a verifiable conclusion from the field work that had been done. To solve this problem a data base program was designed to do a much more complex evaluation of the data. The key elements of the data base program developed to evaluate the O D Study data area are as follows:
1). An assumption was made that all of the plate numbers that were recorded in any given 15 minute interval were evenly distributed over that 15 minute interval (e.g. of 30 cars in a time interval from 2:00 PM to 2:15 PM it was assumed that the first car was recorded at 2:00:00 PM then subsequent cars at 2:00:30, 2:01:00, 2:01:30 and so on at even 30 second intervals).
2) The City Planning Staff collected data to determine the approximate travel time from Node to Node within the study area. The average travel times between Nodes is summarized in Table 2.

From the field data collected by the planning staff there was a variance of ± 30 percent in the travel time between Nodes. The variance of 30 percent is applied to the average travel times to create a time window at each outbound Node.

For an incoming plate number to be scored as a match it must match an outbound plate number within the time window created at each outbound Node.

TABLE 2

ORIGIN - DESTINATION STUDY Travel Time Between Nodes								
Inbound Node	1	2	Outb 3	nd Nod 4	5	6	7	8
1	-	2.41	8.28	4.67	10.50	9.63	9.98	8.88
2	2.41	-	8.16	4.67	10.38	9.52	9.98	8.77
3	8.28	8.16	-	4.00	7.35	8.38	8.73	7.63
4	4.67	4.67	4.00	-	3.35	7.06	8.25	6.92
5	10.50	10.38	7.35	3.35	-	3.13	5.42	7.96
6	9.63	8.52	8.38	7.06	3.13	-	4.55	7.10
7	9.98	9.98	8.73	8.25	5.42	4.55	-	7.45
8	8.88	8.77	7.63	6.92	7.96	7.10	7.45	-

3) The data base program then analyzed each of the approxi1mately 11,200 plate numbers that were incoming to the study area. Based on the average travel time and variance to each of the other nodes a window of actual time was established for a potential outbound match of the inbound plat numbers. Within this window all the potential matches were recorded.

Using this data base program there are an unlimited number of variations in which the data can be organized, analyzed and recorded. For the purposes of verifying the findings as outlined in Section III-A of this report, data is presented in the following tables.

TABLE 3

TABLE 4

Technical Memorandum No. 2
Technical Memorandum No. 2

IV. Corridor Improvement Alternatives

A. Central Avenue Widening

This alternative is based on the "widening" of Central Avenue to provide an overall fourlane section with two through travel lanes in each direction. This "widening" can generally be accommodated within the present curb-to-curb roadway width through the elimination of on-street parking spaces. Actual construction of wider pavement would be limited to localized areas as necessary.

The proposed Central Avenue widening from Oak Street to south of Silver Street is depicted on Figure 4. The removal or reconfiguration of on-street parking generally allows for operation of four traffic lanes throughout the corridor segment. The existing one-way loop in the downtown area (Central Avenue/Main Street) is retained with the present two-lane one-way movement. Actual construction of pavement widening is required in the vicinity of Ham Street and for left turn lanes at the intersections of Oak Street, Chestnut/Sixth Street, Washington Street and Silver Street.

1993 design hour volumes at key roadway segments along the corridor are indicated, and are generally the same as those volumes depicted in Figure 2.

Figure 4 also illustrates the locations and numbers of designated on-street parking spaces as well as parking restrictions. Approximately 175 existing designated parking spaces are eliminated to accommodate the additional two traffic lanes. Present angle parking along Central Avenue between Third Street and Washington Street is replaced with parallel parking to minimize potential conflicts between parking vehicles and the two through traffic lanes.

Although not directly related to the widening of Central Avenue, this alternative also includes the realignment of Walnut Street to Locust Street and the establishment of two-way traffic flow along Walnut Street. Included at the recommendation of the Transportation Committee, this realignment would eliminate the presently difficult left turn movement from Locust Street to Washington Street.

This alternative also includes new or upgraded signalization at Silver Street, Washington Street, Chestnut/Sixth Street and Oak Street. Overall corridor signal coordination is also suggested.

The estimated cost of implementing this alternative is $\$ 0.9$ to 1.2 million dollars, exclusive of right-of -way and parking space relocation.

B. One Way Circulation Pattern

This alternative is based on the general concept of implementing an enlarged one-way roadway loop around the downtown area for a two-lane traffic movement in each direction: Central Avenue one-way northbound from Silver Street to Chestnut Street, and Chestnut and Locust Streets one-way southbound from Central Avenue to Silver Street. The intent of this alternative is to provide the needed corridor flow capacity of two through travel lanes in each direction, but without the need to remove on-street parking.

The proposed lane uses and 1993 design hour traffic flows are indicated in Figure 5. Traffic flow volumes reflect the proposed circulation pattern.

This revised circulation pattern generally accommodates corridor flows between Chestnut Street and Silver Street. The widening of Central Avenue to a four lane section north of Chestnut Street is still required as described in the previous alternative.

In order to accommodate design hour traffic movements circulating through the Downtown area, the following exceptions to a true "one-way" system are needed:
a. Maintain one northbound travel lane along Chestnut Street (in addition to marking two southbound travel lanes).
b. Maintain the present one-way southbound operation of Central Avenue between Third Street and Washington Street. This accommodates the present commercial zone along Central Avenue as well as maintains the Broadway approach to points south along the corridor.
This alternative requires the following major construction items:
a. Widen Silver Street to provide a two-lane east bound movement between Locust Street and Central Avenue. Also increase the corner radius on the southwest corner of the Silver/Central intersection.
b. Realign Walnut Street to connect to Locust Street in the vicinity of Hale Street. This realignment would carry the two-lane southbound movement of corridor traffic. Locust Street between Washington Street and Hale Street would also become one-way southbound.
c. New or upgraded signalization at Silver/Central, Silver/Locust,Washington/Chestnut, Washington/Central, and Central/Chestnut/Sixth. Overall corridor signal coordination is also recommended.
d. Widening of Chestnut Street near Central Avenue and rechannelization of the present Central/Chestnut/Sixth intersection(s).

Figure 5 also illustrates the locations and numbers of designated on-street parking spaces as well as parking restrictions. Approximately 55 existing designated parking spaces are eliminated to accommodate the localized lane widenings. Included in this parking reduction is conversion of angle to parallel parking along the easterly side of Central Avenue between Second and Washington Streets to minimize potential conflicts between parking vehicles and the through traffic lanes.

The estimated cost of implementing his alternative is $\$ 0.75$ to 1.0 million dollars, exclusive of right-of-way and parking space relocation.
C. New Bypass Roadway

The alignment of this bypass roadway is illustrated in Figure 1 and follows the alignment of the existing C.L. Railroad tracks between the Chestnut/Third intersection and the Central/Locust intersection. A two-lane bypass roadway is envisioned.

Further elaboration of this alternative was discontinued early in this study because of the following major drawbacks.
a. Lack of a cost effective intersection with Silver Street due to the present grade separation at the junction of the two facilities.
b. The location of the southern terminus of the bypass in the vicinity of the Locust/Central intersection which would compound present problems at the intersection (See Technical Memorandum No. 1).
c. High capital improvement cost which would not lessen the need for capital improvements to alleviate present problems along Central Avenue.

V. Comparison of Alternatives

A. Procedure

A further comparison was made among the following three alternatives for the 1993 Central Avenue Corridor: continued use of the Present Roadway Facility, the Widened Central Avenue option and the One Way Circulation pattern. This comparison was developed in terms of the following quantitative and qualitative factors:

- Impact on local street traffic through downtown neighborhoods (i.e. traffic increases on local streets due to circulation of corridor traffic).
- Downtown on-street parking along Central Avenue (measured in terms of number of existing spaces lost).
- Quality of through traffic flow (delay to corridor through travel).
- Quality of local traffic flow (delays to circulating local traffic).
- Key intersection Level of Service (Level of Service described in next section).
- Impacts to public transportation (i.e. delays and bus stop locations).
- Cost of major capital improvements.

Level of Service determinations are described in Section B of this chapter. Section C summarizes and compares the factors developed for each of the three alternatives.

B. Traffic Levels of Service

Level of Service (LOS) is a qualitative measure describing driver satisfaction with a number of factors influencing the degree of traffic congestion. These factors include speed and travel time, traffic interruption, freedom to maneuver, safety, driving comfort and convenience, and delays. There are six levels of service describing traffic flow. The highest is LOS A, describing a free-flow condition. The lowest, LOS F, is described as forced flow, and is characterized by traffic volumes at the roadway capacity and extreme congestion.

LOS C, which is normally utilized for design purposes, describes a stable condition of traffic operation. It has a somewhat restricted movement due to higher traffic volumes, but flow conditions are not objectionable for motorists.

LOS D, which is acceptable for traffic operations in urban environments and during peak hours of traffic flow, reflects a more restricted movement for motorists. Queues and delays may occur during short peaks, but lower demands occur often enough to permit clearance of developing queues, thus preventing excessive backups. LOS E is defined as the actual capacity of the roadway and involves delay to all motorists due to congestion. Levels of Service E and F are generally considered unacceptable.

Level of Service for signalized intersections is defined in terms of average delay per vehicle entering the intersection. Delay is considered a measure of driver discomfort, frustration, fuel consumption and travel time. Table 7 summarizes the criteria for signalized intersection level of service.

Level of Service analyses were performed for the following key intersections: Central/Silver, Central/Washington, and Central/Broadway. These analyses were conducted using the methodology of the 1985 Highway Capacity Manual and the resulting levels of service are summarized in the next section of this chapter. Copies of the capacity calculations are included in Appendix B.

TABLE 7
 LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	STOPPED DELAY PER VEHICLE (SEC)
A	5.0
B	5.1 to 15.0
C	15.1 to 25.0
D	25.1 to 40.0
E	40.1 to 60.0
F	

SOURCE: 1985 Highway Capacity Manual

C. Findings

The comparative factors for each of the three alternatives are summarized on the following tables:

- Table 8, Maintain Present Roadway Facility
- Table 9, Widened Central Avenue
- Table 10, One Way Circulation

TABLE 8

ALTERNATIVE COMPARISON SUMMARY MAINTAIN PRESENT ROADWAY FACILITY

Change From Present (1988) Conditions

* Assumes Optimized Signal Timing.

TABLE 9

ALTERNATIVE COMPARISON SUMMARY
WIDENED CENTRAL AVENUE

TABLE 10

ALTERNATIVE COMPARISON SUMMARY

 ONE WAY CIRCULATION| Area of Concern | Positive Change | No Change | Negative Impact | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Local Street Traffic through Downtown Neighborhoods | | | X | Locust Street corridor and west (85\% increase on Locust Street) |
| Downtown on-street parking along Central Avenue | | | X | Loss of 55 designated spaces (includes 20 spaces along Washington and Silver) |
| Traffic Circulation - through trips | X | | | Less travel time and delay |
| - local trips | | | X | Indirect routing due to one-way restrictions |
| Key Intersection Level of Service
 - Central/Silver
 - Central/Washington
 - Central/Broadway | $\begin{aligned} & X \\ & X \\ & X \end{aligned}$ | | | Under capacity (LOS C) Under capacity (LOS D) Under capacity (LOS C) |
| Public Transportation | X | | | Less travel time and delay |
| Major Capital Improvements | | | X | Estimated Cost \$750,000 to \$1 million for: |
| | | | | - Walnut Street realignment: (right-of-way required) |
| | | | | - Widening Silver from Locust to Central (right-of-way required) |
| | | | | - Widen/Signalize Central at Oak
 - Signalize/channelize Central at Chestnut/Sixth |
| | | | | - Minor roadway/curb widening along Central at Ham |
| | | | | - Corridor signage and resignalization/coordination implementing one-way |

The following major findings can be derived from inspection of the three comparative tables:

1. Without further improvements to the downtown segment of the Central Avenue corridor, traffic flow will continue to degrade through the year 1993 with increasing localized breakdowns in traffic operations.
2. Both the Widened Central Avenue and One Way Circulation alternatives, as proposed, provide acceptable traffic flow operations along the corridor under year 1993 conditions.
3. The capital cost (in 1988 dollars) of implementing either of the two proposed alternatives is comparable: $\$ 0.9$ million to 1.2 million dollars for the Widened Central Avenue and $\$ 0.75$ to 1.0 million dollars for the One-Way Circulation alternative.
4. Presently designated on-street parking spaces will be lost under either of the alternatives: 175 spaces lost under the Widened Central Avenue and 55 spaces lost under the One Way Circulation alternative.
5. Increased traffic flow on local neighborhood streets by corridor-related traffic will result under the no-build alternative (trips bypassing the otherwise congested Central Avenue) and the One-Way Circulation alternative (additional circulation on the local street system because of directional flow restrictions imposed by the one-way system).

VI. Recommendations

The following recommendations for the Downtown segment of the Central Avenue corridor are made for the City of Dover Master Plan. These recommendations were presented to, and concurred by, the City of Dover Transportation Committee.

1. Implement the widened Central Avenue alternative depicted in Figure 4. Stage the implementation of widening and improvements with the easiest-to-implement roadway sections done first. This will result in localized benefit of some improvements in the interim period before completion of the entire corridor improvement from the Miracle Mile to Route 108.
2. The incremental removal of on-street parking to accommodate the Central Avenue widening should be coordinated with a phased plan for replacement parking at nearby off-street locations.
3. On initial implementation of the Central Avenue widening between Broadway and Washington Street, retain the present angle parking along Central Avenue. Assess the impact of this parking on the operations and safety of travel along this roadway segment as traffic flows increase. If or when necessary, this parking can be converted to parallel parking.
4. Implement the Walnut Street realignment to Locust Street, and conversion to twoway flow.

CITY OF DOVER TRANSPORTATION COMPONENT - MASTER PLAN

APPENDIX
TECHNICAL MEMORANDUM NO. 2 CENTRAL AVENUE CORRIDOR STUDY

Prepared for:

THE CITY OF DOVER, N.H.
DEPARTMENT OF PLANNING AND COMMUNITY DEVELOPMENT

JULY, 1988

by:

in association with:

TECHNICAL MEMORANDUM NO. 2 CENTRAL AVENUE CORRIDOR STUDY

APPENDIX A

TRAFFIC COUNT DATA SUMMARIES

File Name: dover-ce

TOWN.........DOVER N.H. LOCATION.....WASHINGTON/CHESTNUT DAY OF WEEK:THURSDAY

COMPLETED BY......MEGAN/STEV

$\begin{gathered} \text { TIME } \\ \text { PERIODS } \end{gathered}$	A															ON		
	WEST-BOUND			ON	SOUTH-BOUND			ON		T-BC	UND	ON		-				
	WASH	ING			CHES	tnut				HING	Ton			NUT				
	L	5	R	tot.	L	S	R	tot.	L	5	R	тот.	L	S	R		TOTAL	total tally
3:30-3:45	5	44	76	125	34	28	53	115	51	78	9	138				0	378	
3:45-4:00	2	44	67	113	42	23	54	119	56	81	8	145				-	377	
4:00-4:15	2	73	81	156	56	33	54	143	49	69	12	130				0	429	
4:15-4:30	5	53	88	146	52	31	49	132	48	52	8	108				0	386	
4:30-4:45	3	55	74	132	51	32	63	146	42	58	15	115				0	383	
4:45-5:00	2	43	87	132	43	34	88	145	60	70	6	136				0	413	1581
5:00-5:15	1	52	91	144	49	26	73	148	45	50	8	103				0	395	1587
5:15-5:30	1	63	59	123	55	33	57	145	46	47	7	100				0		1569
TOTAL	21	427	623	1071	382	240	471	1093	397	505	73	975			0	0	3139	1569
total of				1071				1093				975					3139	

FILE NAME:DOVERWCP
traffic movement summary table
TOWN.........DOVER N.H. LOCATION.... CHESTNUT/SIXTH
DAY DF WEEK:WEDNESDAY

```
WEATHER..... ROAD SURFACE....
```

DATE:...3/2/88
COMPLETED BY......MEgAN/STEVE

3:30-3:45	7	13	42	62	45	54	3	102	3	55	0	58	1	52	9	62	284	
3:45-4:00	0	18	40	58	54	53	6	113	2	40	0	42	0	62	6	68	281	
4:00-4:15	4	17	41	62	59	42	5	106	2	27	0	29	0	53	7	60	257	
4:15-4:30	5	20	24	49	47	45	3	95	1	31	1	33		59	4	64	241	1063
4:30-4:45	4	22	33	59	53	43	7	103	5	35	1	41	0	55	6	61	264	1043
4:45-5:00	3	25	29	57	62	40	2	104	1	31	0	32	0	61	7	68	261	1023
5:00-5:15	7	21	38	66	75	56	9	140	4	33	0	37	0	59	13	72	315	1081
5:15-5:30	4	22	27	53	58	46	2	106	3	29	0	32	0	64	4	68	259	1099
total	34	158	274	466	453	379	37	869	21	281	2	304	2	465	56	523	2162	10n
- TOTAL DF				466				869				304			-	523	2162	

FILE NAME:DOVERWSP

TOWN........ DOVER N.H. DAY OF WEEK: WEDNESDAY COMPLETED BY.......MEGAN

LOCATION.... WASHINGTON/LOCUST WEATHER...

FILE NAME:DOUERWLP

TECHNICAL MEMORANDUM NO. 2 CENTRAL AVENUE CORRIDOR STUDY

APPENDIX B
TRAFFIC CAPACITY ANALYSES ${ }^{\circ}$


```
TWFTEFYNG MNFOFOQTEON
```



```
TME PERTOD ANALYZED:":".".":".".".".WKOY PM F& HR
OTHEE NFGRMATION:
FROJECTET 19G母 CONDRTIMN -- NO CHANGE
TBMETE vOL UME
\begin{tabular}{|c|c|c|c|c|}
\hline & E8 & We & NE & 5 m \\
\hline CEFT & 0 & ] & 1.43 & 276 \\
\hline THEU & 59 & 0 & 974 & 771 \\
\hline ETकी & 198 & ) & ) & 2 m \\
\hline RTOE & ) & ] & \% & ] \\
\hline
\end{tabular}
```


	$E E$		WE		NE:		5 E	
LANE	TVPE	WTOTH	TYFE	WTOTH	TYPE	WTOTH	TYFE	WTOTH
1	T	12.0	LT	10.0	1.	10.0	1.	$10_{0} 0$
2	T	12.0		12.0	T	11.0	!	10.6
3	R	12.0		12.0		11.0	T	120)
4		12.0		12.0		120	F	12.0
5		12.0		120		12.0		12.0
6		12.0		120		12		12.0

1. - EXCLUQXVE LEFT LANE

LT - LEFT/TMFOUGH LANE
LE - LEFT/ETGHT ONAY LANE
LTR - LEFT/THFOUGH/RTGHT LANE

T - ExCLUSTVE THROUGH $\angle A N E$
TR - THROUGH/FXOHT \&ANE
F - ExClUSTUE FRGHT LAME

ADJUSTMENT FAGTOFS

	$\begin{gathered} \text { GRADE } \\ (\%) \end{gathered}$	HEAVY VEH. (\%)	ADJACEMT V/N	$\begin{aligned} & \text { FGQ } \\ & (\mathrm{Nm}) \end{aligned}$	Buses (Nb)	FH
EASTBOUND	\%.00	उ, \%	Y	10	0	O. 9
WESTBGUND	0 O	3.90	Y	10	0	0.90
NOFTHEOUND	0.0	$\square \mathrm{BO}$	Y	20	0	. 90
SOUTHECUND	0.08	3.00	γ	0)	0.90

No = mumber of parbing maneuvers/hr" No = number of buses stopping/hy

	CONFLICTING FEDS (peds/hour")	$\begin{aligned} & \text { PEDE } \\ & (Y / Q) \end{aligned}$	$\begin{aligned} & \text { Burtan } \\ & (\min T \text {) } \end{aligned}$	mberval
EASTEOUND	50	N	17.0	\%
WESTBRUND	50	N	17.0	\%
NOFTHETUUND	5	N	9.6	\cdots
SOUTHEOUND	50	N	9.6	\cdots

min $T=m i n i m u m$ grem time for pedestriens


```
EAST WEST FHASWNE
```


NORTHEOUND FT
SOUTHEOUND FT

NORTH/GOUTH FHASTHS

	PHASE- 1	PHASE-2	FHasE	FHACE- 4
NOETGEMUND				
LEFT	x			
THEU		x		
FIEHT		x		
FEDS				
SOUTHETHリD				
EEFT	χ			
THFU		x		
FTOHT		X		
FEDS				
EASTBMUNO FT				
WESTEOUND FT				
GREEN	5,0	40.0	0.0	0
YELYOW + ALI FED	5.9	E,	O. 0	O.

vO मा कDजリSTMENT MOFESमE:
Fage-4

EB

1 T	0	9. 9						1.000			
7H	98	\%.90	442	T	442	2	1. OE 5	1.000	464	9.0)	0.00
ET	196	0.90	220	R	220	1	1.000	1.090	20	0.00	1.00

WE

$1 T$	0	9.90
$T H$	0	9.70
$R T$	0	9.90

1.000
1.,000
1.000

NE

$1 T$	148	\%.90	159	1	159	1	1.00	1.000	159	1.6)	e. 00
H	974	-9	1082	T	1682	l	1. 000	1.000	10 C	\%.0	¢, 0
ET)	. 90						1.00			-

5 E

17	276	0.9\%	\%7	$!$	\%7	2	1.050	1.000	92	1.90).
TH	771	0.90	97	T	997	1	1.000	1.000	ब\%7	0.00	0.00
Fe	95	\%.9	-29	F	220	1	1.000	1.000	226	\%.0)	1.0)

* Denates a befatto Left Turn Lane Droup

	\vee / c FATTO	$\begin{gathered} a / C \\ \text { WTTO } \end{gathered}$	CYCE हEN.	$\begin{gathered} \text { TEIAY } \\ d \end{gathered}$	LANE BROUF TAP:	$\begin{gathered} \text { TEA } \\ \text { o } \\ 2 \end{gathered}$	$\begin{aligned} & \text { Pण® } \\ & \text { FबG } \end{aligned}$	1 ante BEF: DEIAM	1 WNE बT. 1.15	$\begin{aligned} & \text { TEA } \\ & \text { MY } \\ & \text { MF } \end{aligned}$	10 c By AFF"
EB											
T	0.786	O, 2a3	7%	18.6	792	25	. 1.00	21.1	T	21.1	\cdots
WE											
HE											
L	\%.550	9. 171	70.0	20.2	289	1. 7	1.00	21.7	\square	2- ${ }^{\text {a }}$	C
T	0.945	1,477	79.0	$13_{4} 8$	1.44%	7.5	1.00	2 Z	E		
SE											
1	1. 08	O. 171	70.0	22.2	289	50.7	1.00	74.9	F'	79.3	D
LT	9.190), 457	70.0	8, 5	90:	0.0	1. 00	8.6	E		
F	0.907	$0=45$	$7 \% .0$	1. B_{4}	551	13.4	1.00	20.9	D		


```
                                    Fac
```



```
IDENTXFYHMG UHGFWATION
```



```
TTHE FERTOD ANA YZED".":"."."."***"*"WKDY PM FG HE
OTHEF TNFOFMATTON:
FROTECTED 19GS CONDTTTON - NO TMFRQVEMENTS
TRAFFIC VGLUMES
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline & \(E 8\) & WE & NE & 56 \\
\hline LEFT & 440 & ) & 1.08 & ف \\
\hline THFU & ] & ] & 9\% & 909 \\
\hline ETCHT & 49 & ) & ) & 3 E \\
\hline ETOE & ] & ) & ) & ¢ \\
\hline
\end{tabular}
(RTGF volume must be lese tham or wourl to forbt turn volumes.)
```


	EF		WE		NE		5 B	
LANE	TYEE	WTOH	TYPE	WTOTH	TVFE	WTOTH	TVEE	Wroth
1	1.	12.0	1..T	19	L.	11.0	T	12.0
2	F	10.0		12.0	TFP	12.0	F	11.0
3		12.0	\dagger	120		12.0		12,0
4		12.0		12.0		12.0		12.0
5		1- ${ }^{\text {a }}$		12.0		120		12.0
6		12.0		120		12:0		12.0

```
I.- EXGLUGGVE IEFT LANE
T - EXCLUSTVE THROUGH I ANE
LT - LEFT/THFOUGH LANE
LE - EFT/RTCHT ONLY LANE F - ExOUUSTUE ETGHT LANE
TR ... THFOUUH/FTEHT LANE
LTR - IEFT/THFOUMH/ETEHT LANE
```

AOTUSTMENT FAOTOR

	GRa币E (\%)	HEAVY VEH. (\%)	ADJACENT Y / d	$\begin{aligned} & \text { FCG } \\ & (\mathrm{Nm}) \end{aligned}$	guses (Nb)	FHF
EASTEOUNO	-\%	उ.00	γ	10)	(\%)
WESTETU	-,	3.00	γ	10)	0.70
NतFTHEOUND	- ¢	$\cdots=0$	Y	10	\%	., 9
SOUTHEOUND	-00	$\square \mathrm{O}$	Y	10	0	0.90

No = mubur of perbimg maneuvers/hw No = mumer of buses stopping/h

	CONFLTETTNG FEDS (pedehour")	$\begin{gathered} \text { FEDE } \\ Y \mathrm{~N} \end{gathered}$	$\begin{aligned} & \text { EUTTON } \\ & \text { (win }) \end{aligned}$	AFFIVAL
Emstaouno	\%	N	17.9	\%
WESTBOUNO	0	N	17.0	\%
MOFTHEOUND	-	N	9.6	\%
SOUTHEOUND	\%	N	9.6	3

min $T=$ minimum grees time for pedestrienc

```
STGNAL SETTR|G TFERATIDNQ MNALYGTS
    Fage
```


PEETITED
LOQT TME/PHEE $=3.0$
CVCTE IERTH: $=9$
;

	FHEE - 1	FHASE-2	PHEE	PHASE-4
EASTEOUND				
LEFT	x			
THEU	χ			.
FTEHT	X			
FEDS				
WESTEOUNO				
1 EFT	x			
THFU	x			
ETEHT	x			
FEOS				

NORTHEOUND FT
GOUTHEOUND RT

NOFTH/SOLTH FHASWN世

	F4mem	FHASE-2	FHACE -	PHASE-4
Morthboumo				
LEFT	x			
Theu	x			
FTCHT	x			
PeDs				
SOUTHETUND				
AEFT	X			
THEU	x			
ETOHT	X			
PEDS				
EASTETUND RT				
WESTEOLID RT				
GREEN	$40,0$	0.0	O. 0	0.0
YELIOH + AL FED	5.0	0.0	O.	


```
    Fege
```



```
            TOF& NO & &DO
            GmT: NO, f
EE
```



```
MB
NE
```



```
SE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T & 1900 & \(\underline{1}\) & 1.000 & 0.96 & 1.000 & 1.00 & 1. 00 & 1.00\% & 1. ण¢) & 1.000 & 7 \\
\hline F & 1600 & 1. & 0.970 & 0.795 & 1.0め & 0.6 O & 1.000 & 1.000 & 0, 850 & 1.000 & 124 \\
\hline
\end{tabular}
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & DELS & LAME & DELAY & & LANE & LFNE & DEIAY & 105 \\
\hline \(v / \mathrm{c}\) & ब & CruE & d & Brous & d & FRO¢. & ERF. & CFF. & EY & CY \\
\hline Fhtro & FATIO & EV. & 1 & C®F。 & 2 & FMT & DEIAY & 1 OS & APE: & AFF. \\
\hline
\end{tabular}
EH
```



```
WE
NE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1. 58 & 1.120 & 75.0 & \% & \% & 党 & 1.00 & \% & & \% \\
\hline TR & 1.195 & 9, 60 & 7 7 & 16.7 & 944 & & 4.00 & & & \\
\hline
\end{tabular}
SE
\(\begin{array}{lllllllllll}7 & 0.905 & 560 & 75.0 & 1.2 & 995 & 8.3 & 1.00 & 19.5 & 0 & 16.3 \\ R & 0.664 & 0.50 & 75.0 & 0.1 & 69 & 0.6 & 1.00 & 9.9 & 6 & \end{array}\)
```



```
* Delay end bob not meaningful when any ve is greater than in a
```



```
TMENTYFYTNG {मFOEMATTON
```



```
NAME GF THE EAGTMEST STREET:*:"* ="*STLVER STREET
WANE OF THE NOETH/SOUTH STREET......"WENTRM SUE
```


FEDESTRTAN WALETNG SFEED:".":."."."." O (feet;EE%)

```



```

OTHEF TNFOFHATTON:
FROJECTED 19G% CONOTTTON -- WRDEN OENTFOL SUENHE
TRAFFTC VOLUNES

```

```

	Eg	We	NB	EB
LEFT	440)	198	¢
THEU])	9e	89
FTEHT	49))	Bx
FTOF]]	9)

(RTOR volume must be IEse than or egual to ETGHT turn volumas,

```



\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LANE} & \multicolumn{2}{|c|}{\(E \mathrm{E}\)} & \multicolumn{2}{|c|}{WE} & \multicolumn{2}{|c|}{NE} & \multicolumn{2}{|c|}{8} \\
\hline & TYFE & WTDTH & TYFE & Wroth & TVPE & WTDTH & TYEE & QTET \\
\hline 1 & . 1. & 12, & LT & 10.0 & 1. & 10 & T & 12. \\
\hline 2 & \(1 F\) & 10.0 & & \(1 \pm 0\) & T & 11: & TE & 11.0 \\
\hline 3 & & 120 & & 120 & T & 11.0 & & 12.0 \\
\hline 4 & & 12 O & & 12.0 & & 12.0 & & 120 \\
\hline \% & & 12.0 & & \(12=0\) & & 12.0 & & 120 \\
\hline 6 & & \(1 \%\) \% & & 12.0 & & 12.0 & & 12.0 \\
\hline
\end{tabular}
I. EXCUSTUE IEFT AAE

IT - LEFTMTHOUSH LANE
UF - EEFT/ETMH ONU \(\angle A N E\)
ITE - LEFT/HROUGH/ETGHT IMNE
\(T\) ExGtuSTUE THROUGH LANE
TE … THROUGH/EIGHT 1 ANE
E ExClUSTVE ETGH 1 ANE

ADTUSTWENT FAOTOFS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Gค円ाE \\
(\%)
\end{tabular} & HEAVY VEH. (\%) & AD.7ACENT
\[
Y / N
\] & \[
\begin{gathered}
\mathrm{FG} \\
\text { (Nm) }
\end{gathered}
\] & \begin{tabular}{l}
BUSES \\
(Nb)
\end{tabular} & FHF & \\
\hline EASTEOUND & . 0 & \%,00 & \(Y\) & 10 & ] & ¢, \% & \\
\hline WEGTEOUMD & \%.00 & 3.00 & \(Y\) & 10 & ¢ & ), 0 & \\
\hline NORTHEOUND & .00 & 3.00 & \(Y\) & 10 & 0 & 0.9 & \\
\hline कणUTHEOUHD & 0.00 & 3.00 & \(\gamma\) & 10 & ) & 0.90 & \\
\hline Nm = mumber & of parts & 9 maneuver & /hem Nu & \(=\mathrm{mb}\) & mber of & buses & stopp \\
\hline & CONFI foed & THE FEDS hour-) & FEOES
\[
(Y N)
\] & TETA & EUTTON (min T) & & AEfTVAL \\
\hline EASTEOUND & & \% & N & & 17.0 & & 3 \\
\hline WESTBOUND & & ) & N & & 17.0 & & \% \\
\hline NOFTHEMUMD & & \% & N & & 9.6 & & 3 \\
\hline SOUTHEOHHD & & 0 & N & & 9.6 & & 3 \\
\hline
\end{tabular}
min \(=\) minimum grem kime for pedentrians

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& 14 \\
& 1 H 6
\end{aligned}
\] & f & \[
\frac{f}{H V}
\] & \(\ddagger\) G & p & BE & \[
\begin{gathered}
f \\
A
\end{gathered}
\] & FT & \[
\begin{array}{r}
f \\
\end{array}
\] &  \\
\hline 1800 & 1. & 1.000 & 9.985 & 1.00 & 1. 00 & 1.000 & 1.00¢ & 1.000 & . 00 & \(17 \%\) \\
\hline 1 BO & t & 0.930 & 0.985 & 1.000 & 0.850 & 1.00 & 1.000 & 0.91 & 1.00) & 1291 \\
\hline
\end{tabular}

WB
DE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline L & 1800 & 1 & 0.96 & O, 985 & \(1.00 \%\) & 1.000 & 1.00 & 0 & ) & 0 & 6 \\
\hline T & 1800 & 2 & 0.970 & O,985 & 1.000 & . 92 & 1.000 & 1.000 & 1 oo & 1.0@ & E164 \\
\hline
\end{tabular}

5 E

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ```
    QO].
FlOL FATE
    (v)
``` & \[
\begin{gathered}
\text { AD. कAT }= \\
\text { Fon fate } \\
\Leftrightarrow!
\end{gathered}
\] & \[
\begin{aligned}
& \text { F6世 } \\
& \text { Fधा }
\end{aligned}
\] & \[
\begin{gathered}
\text { QEE RATHO } \\
(\square, 6)
\end{gathered}
\] & दीयह बाता० QשATITY (c) & \[
\begin{gathered}
v< \\
\text { बatro }
\end{gathered}
\] \\
\hline \multicolumn{7}{|l|}{E8} \\
\hline 1 & 440 & \(177 \%\) & \%. 40 & 9, 29 & 5 O & 0.846 \\
\hline 1 P & 103 & 1291 & - ¢ & O. 295 & 37 & 0.273 \\
\hline \multicolumn{7}{|l|}{WE} \\
\hline \multicolumn{7}{|l|}{Ne} \\
\hline 1 & 120 & 1560 & \%, \%7 & 0.098 & 146 & \\
\hline T & 165 & 5164 & O-5 & 9,6\% & 1995 & \[
0.54
\] \\
\hline \multicolumn{7}{|l|}{SE} \\
\hline TE & 136 & W067 & \% 442 & 9.47\% & 1513 & \%. 896 \\
\hline \multicolumn{4}{|l|}{Cyele Length, \(0=7 \mathrm{O}\), ¢cen} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Lost & Fer [yw] & \(1 .=9.0\) & & & & \\
\hline
\end{tabular}

E

We i
NS

se


```

TDENTIFYT\&G INFORMETYON

```

```

NAME OF THE EAST/WEST STREET.........".STLUER STREET
WME OF THE NOFTH/SOUTH STREET:....."GENTFQL AVE

```

```

    }
    ```



```

OTHEF TMFORMQTTOM:
FROYEETED 19Q% WONDTTTON -. WME WAY CTRCUIATTON
TRAEFTE VOLUPES

|  | EB | W8 | NE | 98 |
| :---: | :---: | :---: | :---: | :---: |
| LEFT | 440 | ) | 109 | O |
| THEU | ) | ] | 9® | ] |
| ETGHt | 450 | 0 | 0 | 3 B |
| ETOF | \% | \% | ] | ] |
| (ETOR | must | tha | 121 | turs |

```


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{\(E \mathrm{E}\)} & \multicolumn{2}{|c|}{We} & \multicolumn{2}{|c|}{We} & \multicolumn{2}{|c|}{E} \\
\hline L.ANE & TYPE & WTDTH & TVPE & drome & TVE & ATDTH & Trafe & WTOTH \\
\hline 1 & 1 & 120 & 1. & 10.0 & L & 1.9 & T & 12.0 \\
\hline 2 & \(F\) & 120 & & 12.0 & 7 & 11.0 & TE & 11.0 \\
\hline 5 & & 12.0 & & 12.0 & 7 & 11.0 & & 12 O \\
\hline 4 & & 120 & & 12.0 & & 120 & & 12.0 \\
\hline 5 & & 12.0 & & \(12=0\) & & 12.0 & & 12.0 \\
\hline 6 & & 12.0 & & 12.0 & & 12 O & & \(1 \stackrel{0}{2}\) \\
\hline
\end{tabular}

1 - EXCLUSTVE LEFT \(\angle A N E\)
T - EXQLISTVE THETUQ \&ANE
IT - EEFT/THEOUOH I ANE
TE - THFOUGH/FTEHT 1 OUE
GR - LEFT/RTOHT ONI Y ANE
G - EXCLISTYE ETOHT \(A\) ANE

```

EAST/mFST FHSTNS
PHAGE-- PHASE-2 FHASE-Z FHASE-4.
FAGTBOUND
IEFT }
THRU X
ETGHT .
FEOS
GESTETUNO
LEFT x
THTU x
CTGHT X
FEDS
NOFTHEOUND ET
GOUTHBOUNO RT
GREEN
%.0
%
0
O.0
0
YELIOU + ALB RED G.
0,0
0%
NOFTHFOUTH FHSETHQ

|  | FHASE-1 | FHASE-2 | FHASE-3 | FHe ${ }^{\text {F- }} 4$ |
| :---: | :---: | :---: | :---: | :---: |
| MORTHEOUN |  |  |  |  |
| LEFT | $x$ |  |  |  |
| THEU | $\chi$ |  |  |  |
| RTOHT | $\chi$ |  |  |  |
| FCOS |  |  |  |  |
| SOUTHECUND |  |  |  |  |
| 1 EFT |  |  |  |  |
| THES |  |  |  |  |
| RTSHT |  |  |  |  |
| FEDS |  |  |  |  |
| E¢GTEDUND Et |  |  |  | s |
| WESTBOUND ET |  |  |  |  |
| GREEN | ए- | 0.0 | On 0 | \%, |
| VEln $\quad$ ALIED | ) 9.0 | ) | O. 0 | O. |

```
```

VOLUFE कQ\USTMENT UTESQHEE,

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { My!. } \\
& \text { vot. }
\end{aligned}
\] & FHF & \[
\begin{aligned}
& \text { aDJ: } \\
& \text { णा.. }
\end{aligned}
\] & にの世 बसF． & \begin{tabular}{l}
IME \\
QEF＝ \\
Vी．
\end{tabular} & N0． & LMEE UTH． FACT． & \begin{tabular}{l}
GrauTH \\
FACT．
\end{tabular} & \[
\begin{aligned}
& \text { AD: } \\
& \text { बहf } \\
& \text { णा : }
\end{aligned}
\] & \[
\begin{gathered}
\text { PRO } \\
1 T
\end{gathered}
\] & \[
\begin{gathered}
\text { WGQ } \\
E T
\end{gathered}
\] \\
\hline 440 & \％．9 & 489 & － 1 & 489 & 1 & 1．000 & 1.00 & 489 & 1.00 & ． 00 \\
\hline ］ & 0.90 & & & & & & 1.000 & & & \\
\hline \[
450
\] & 9，90 & कण & B & 500 & 1 & 1.000 & 1.000 & 50 & 9．0 & 1.00 \\
\hline
\end{tabular}
4B
\begin{tabular}{ccc}
LT & 0 & 0.90 \\
TH & 0 & 0.90 \\
RT & 0 & 0.90
\end{tabular}
1．000
1.000
1.00
NE
\begin{tabular}{ccccccccccc}
17 & 108 & 0.90 & 190 & 1 & 120 & 1 & 1.000 & 1.000 & 120 & 1.00 \\
\(7 H\) & 708 & 0.90 & 1009 & 7 & 1000 & 2 & 1.050 & 1.000 & 1069 & 0.00 \\
FT & 0 & 0.90 & & & & & & 1.000 & & 00
\end{tabular}
SE
\begin{tabular}{lccc}
17 & 0 & 0.90 & 1.000 \\
TH & 0 & 0.90 & 1.000 \\
RT \(5 \%\) & 0.90 & 1.600
\end{tabular}
＊Denotes a Defacte Left Turn Lane Group
```

```
SATUFGTHM FGO mDUGTMENT UOEFSHEET

```

| TDEA |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 ¢7. | H0, | F. | 7 | F | F | $\ddagger$ | F | $F$ | F | कबd. |
| FlOb | $1 N 5$ | 4 | $H$ | 0 | 1 | EB | $\cdots$ | FT | 1. | FlOH |

```

\section*{Ea}


```

UE
ME

| 1 | $18 \%$ | 1 | 0.780 | 9.985 | 1.00 | 1.000 | 1.000 | ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 1800 | 2 | 0.979 | 0.985 | 1.000 | \%,90 | 1.00\% | 1. "00 | 1. |  |  | 1 |

```

5 E

\begin{tabular}{|c|c|}
\hline Entro & क्men matro \\
\hline (*) & (9/C) \\
\hline
\end{tabular}
\begin{tabular}{cc}
GACTY & \(\forall / G\) \\
(a) FAT
\end{tabular}
\(E=\)
\(1776 \quad 0.276\)
0.386
0.396

694
. 715 \(12 \mathrm{\theta}\) 0. 0

494 1:012 \%

WE
00
)

NE
\begin{tabular}{lllll}
149 & 0.066 & 0,529 & 741 & 0.162 \\
3164 & 0.55 & 0.59 & 1676 & \(0.63 \%\)
\end{tabular}
\(5 \%\)

Host Tine Fer
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
v/e \\
FATMO
\end{tabular} & \[
\begin{gathered}
96 \\
\mathrm{FH} \mathrm{CO}
\end{gathered}
\] & \[
\begin{gathered}
\text { GQE } \\
\text { EEN. }
\end{gathered}
\] & \[
\begin{gathered}
\text { MEIAY } \\
1
\end{gathered}
\] & 1.ANE GROUF GPE. & \[
\begin{gathered}
\text { MEA, } \\
2
\end{gathered}
\] & \[
\begin{aligned}
& \text { FRG: } \\
& \text { FACT: }
\end{aligned}
\] & \begin{tabular}{l}
1 AME \\
GF \\
DELA
\end{tabular} & & \begin{tabular}{l}
DEIGY By \\

\end{tabular} & 105 BY \(A F F\) \\
\hline \multicolumn{12}{|l|}{ES} \\
\hline 1 & 9,715 & 9.771 & 70.0 & 13, & 6 6 4 & 2. 5 & 1.90 & 15,3 & C & \%\% 7 & D \\
\hline 8 & 1.012 & 9, 566 & 70.0 & 16.5 & 494 & 34.3 & 1.00 & 50, 7 & \(E\) & & \\
\hline we & & & 1 & & & & & & & & \\
\hline \multicolumn{12}{|l|}{NE} \\
\hline 1 & \%.162 & \%, 59 & \(7{ }^{7}\) & 5.5 & 741 & \% & \(1.0 \%\) & 5.5 & \(E\) & \(9{ }_{n} 2\) & E \\
\hline T & O. 63 & 0.529 & 70.0 & ¢. 9 & \(1.9 \%\) & \(0 \cdot 6\) & \(4 . \mathrm{Og}\) & \(9=5\) & 9 & & - \\
\hline
\end{tabular}

5 B


```

TDENTSFYNG UNFORATYON

```


```

NANE OF THE NGQTH/STUTH STREET* "=."*VENTRAL AVE

```



```

DATE OF THE AN\&LYSTS..."."...."......"4/26/G8

```

```

OTHEF THFORMSTSON:
FROJECTED 19GE CONDITTON -- NO TMFROUEMENTS
TBATFTC VOlumEs

```

```

|  | En | W8 | NE | 98 |
| :---: | :---: | :---: | :---: | :---: |
| LEFT | ) | 494 | , | ) |
| THFL | ) | 0 | $79 \%$ | $7 \%$ |
| RxGHT | \% | Q2 | 16 | ] |
| FTOF | ¢ | 0 | ) | , |

(FROR volume must be less than or squal to FTGHT turn volumes:)

```


AD.JUSTMENT FACTMES

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & GFaDE (\%) & HEAVY VEH. (\%) & AD.JARENT \(\because / \mathrm{N}\) & \[
\begin{gathered}
\mathrm{FKG} \\
(\mathrm{Nm})
\end{gathered}
\] & \begin{tabular}{l}
BUSES \\
(Nb)
\end{tabular} & FHF \\
\hline EASTBOUMD & ¢. & 3.00 & N &) &) & \%.90 \\
\hline WESTEOUND & .00 & \% 90 & N & \% & O & 0.90 \\
\hline NOFTHEOUND & \%. & \%.00 & Y & 20 & \% & \%,90 \\
\hline GOUTHEOUND & ¢, & \%, ण & Y & 20 & 0 &). 70 \\
\hline
\end{tabular}

CONFIITTNG FEDS
(户еds/hou")
EASTEOUND
WESTEOUAD
NOF
פOUTHQOUMD b
)
0
0

FEDESTRTAN EUTTON
(YN) (min T) AERTVAL TYF
\(\mathrm{N} \quad 17=0\)
\(\mathrm{A} \quad 17.0 \quad 3\)
\(\mathrm{N} \quad 9.6\)
3
\(\mathrm{N} \quad \square .0 \quad \because\)
min T = minimum green time for pecterrianw


```

FGET HED
|OST THE/FHASE :
%
GXE LENSTH=6क.0
E\&ST/WEST FHMSTNG

|  | FHASE- | Phabe- | PHASE - | WHAE 4 |
| :---: | :---: | :---: | :---: | :---: |
| EASTCDMD |  |  |  |  |
| LEFT | $x$ |  |  |  |
| THEU | X |  |  |  |
| ExGHT | $x$ |  |  |  |
| PEDS | 1 |  |  |  |
| WESTETUND |  |  |  |  |
| LEFT | $x$ |  |  |  |
| THED | $x$ |  |  |  |
| RTEHT | X |  |  |  |

FEDS
NORTHEOUND FT
GOUTHEOUNO ET

| GREEN |  | 25.0 | O. | \% | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YEILOW | $\pm \mathrm{Al..}$. | \% | \% 0 | O. | ). |

```

NOFTH/SOUTH FHSSTBS
\begin{tabular}{|c|c|c|c|c|}
\hline & FHASE-I & PHCEE-2 & FHASE - & FHASE-4 \\
\hline \multicolumn{5}{|l|}{MORTHBOUMD} \\
\hline LEFT & x & & & \\
\hline THEU & X & & & \\
\hline स3EHT & \(\chi\) & & & \\
\hline FEDS & & & & \\
\hline \multicolumn{5}{|l|}{SOUTHEOUND} \\
\hline GEFT & \(\chi\) & & & \\
\hline THEU & \(x\) & & & \\
\hline ETEHT & X & & & \\
\hline FEDS & & & & \\
\hline EASTBCUND FT & & & & \\
\hline WESTETUMD ET & & & & \\
\hline GREEN & \%.0 & \%. 9 & \(0 \times 0\) & \% \\
\hline YELLOW + ALL EED & 5.0 & O. 0 & \%, & 0.0 \\
\hline
\end{tabular}

VOU पन A MTM TMENT WOFSSHEET
?aE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Mサ: \\
vol
\end{tabular}} & \multirow[b]{3}{*}{FHF} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { AD.3. } \\
& \text { VI... }
\end{aligned}
\]} & \multirow[b]{3}{*}{LANE GFF.} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { LNE } \\
& \text { GPP: NQ } \\
& \text { UTE } 1 \mathrm{NH}
\end{aligned}
\]}} & \multirow[t]{3}{*}{1.84 UTRE. FAC.} & \multicolumn{4}{|c|}{m0.} \\
\hline & & & & & & & GFObTH & GEe. & EGT & Fer \\
\hline & & & & & & & FAOT: & VOt: & 1 l & FT \\
\hline
\end{tabular}

Eb
\begin{tabular}{rrr}
17 & 0 & 0.90 \\
\(T H\) & 0 & 0.90 \\
BT & 0 & 9.90
\end{tabular}

> 1.00
> 1.000
> 1.000

We
\begin{tabular}{rrr}
17 & 494 & 0.90 \\
\(T H\) & 0 & 0.90
\end{tabular}
) \(47 \quad 547 \quad 1 \quad 1.00\)
\(\begin{array}{lll}1.000 & \\ 1.000 & 5.49 & 1.00 .0 .0 \\ 1.000 & & \end{array}\)
NE
1 T क \(=90\)

TH 7 BE 0.90
970
1.000 1.600 1111 ण, ण० 1
1.000
1.090
1.,000

96 !
0.0
* Denotes a Defacto Left Turn Lame Guoup

```

    306
    | TOEAL |  |  |  |  |  |  |  |  |  | aDJ. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GAT. | N0. | f | 4 | 7 | F. | P. | 4 | F | f | ¢at |
| FHOH | 1 Ns | 4 | HV | 0 | $\rho$ | FE | ¢ | Fl | 1. ${ }^{\text {P }}$ | Fin |

EE
WE

```

```

NB

```

```

60

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{धे०ब世 T
\[
=\bar{x}=
\]} & matys 46 & - 6 HET & & & & Fag\% \\
\hline & \[
\begin{aligned}
& \text { ADO. } \\
& \text { FLOW RATE } \\
& \text { (v) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MT: GAT } \\
& \text { Fioh FATE } \\
& \text { (E) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FLO4 } \\
& \text { (AGTO }
\end{aligned}
\] & GFEN RGTTO (g/C) & LANE GROUS CAFACTY (c) & Vc EATTO \\
\hline \multicolumn{7}{|l|}{\(E 6\)} \\
\hline \multicolumn{7}{|l|}{We} \\
\hline 1. & 548 & 1261 & \%, 45 & 9.415 & 524 & 1.948 \\
\hline \multicolumn{7}{|l|}{- NB} \\
\hline TE & 1111 & 987 & 0.889 & 0.492 & 140 & 9.790 * \\
\hline \multicolumn{7}{|l|}{5 s} \\
\hline TE & 856 & 29. & 9.292 & & 1445 & 0.59 \\
\hline \multicolumn{4}{|l|}{Cyele Length, \(\mathrm{C}=6 \mathrm{~F}\), sec.} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sum (v/s) critical \(=0.924\)
\(\times\) citical 0.909}} \\
\hline Lest Time & Fer Cyche & \(1=6 \%\) & & & & \\
\hline
\end{tabular}


```

FRETMMED LTGT TIMEFHAEE = 3.0 GYQE IENGTH = 6G.0
EलST/WEST FHASTNG
FHSE-1 FHASE-2 FHAQE-G FHASE-4
EASTBM|ND
HEFT , x
THFU ix
FTGHT X
FEDS
\
WESTEOUNO
LEFT X
THRU }
FTGHT }
FEDS
NOFTHEOUND FT
GOUMHEOUND ET'

```


NORTH/SOUTH FHSSTME

NORTHEOUND
LEFT \(x\)
THRU \(x\)
RTGHT
\(x\)
FEDS
कOUTHBOUND
1 EFT \(x\)
THFU \(X\)
ETGHT \(x\)
FFoc
EASTEOUND RT
WEsTEOUND RT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
MUT. \\
vol.
\end{tabular} & FHF & \[
\begin{aligned}
& \text { AD. }= \\
& \text { VDI }=
\end{aligned}
\] & 1 AnE GRF: & \begin{tabular}{l}
1की: \\
- GR". \\
VOI.:
\end{tabular} & \[
\begin{aligned}
& \mathrm{NO} \\
& 1 \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { GAE } \\
& \text { UTH. } \\
& \text { FACT }
\end{aligned}
\] & \begin{tabular}{l}
GहOWTH \\
FACT:
\end{tabular} & \[
\begin{aligned}
& \text { बT. } \\
& \text { GRE, } \\
& \text { U1. }
\end{aligned}
\] & \[
\begin{gathered}
\text { एRO } \\
1 \mathrm{~T}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{FRO} \\
\mathrm{FQ}
\end{gathered}
\] \\
\hline \multicolumn{12}{|l|}{\(E\)} \\
\hline 1 T & 0 & \%.9 & & & & & & 1.000 & & & \\
\hline H &) & 9.9 & & & & & & 1. 000 & & & \\
\hline FT &) & 0.9 & & & & & & 1.00 & & & \\
\hline \multicolumn{12}{|l|}{48} \\
\hline 4 T & 474 & 0.90 & & & & & & 1.00 & & & \\
\hline TH &] & 0.90 & 0 & LT & 549 & 1 & 1.000 & 1.000 & 949 & 1.00 & 0 \\
\hline RT & 92 & 0.90 & & & & & & 1.000 & & & \(\cdots\) \\
\hline \multicolumn{12}{|l|}{NE} \\
\hline \(1 T\) & \(\bigcirc\) & 0.90 & & & & & & 1. 000 & & & \\
\hline TH & 795 & \%.9\% & 870 & TR & 1.58 & 2 & 1. 50 & 1.000 & 1311 & 9.0 & O. 1 \\
\hline ET & 169 & 0.90 & & & & & & 1.00\% & & & \\
\hline \multicolumn{12}{|l|}{E8} \\
\hline . 1.7 & 0 & \%. 70 & & & & & & 1. O\% & & & \\
\hline TH & 754 & 0.90 & 816 & TE & 916 & 2 & 1.06 & 1.000 & E6 & 0. 0 & \(0 \cdot 0\) \\
\hline FT & 0 & \%. 90 & & & & & & 1.000 & & & \\
\hline
\end{tabular}
```

QTUPATTON FHO\& Bथ| TME|T WOFGSHE=!
Fagc

```

```

EB
WE

```

```

NB
TF 1800 2 1.000 0.9ह5 1.000 1.000 1.000 1.000 0.97% \&.000 子4E
68
TF 1500 2 1.000 .,98与 1.000 1.000 1.000 1.000 1.000 1.000 उ54

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline ADd： & ¢0才．SAT． & OMb & & 1 AdE & \\
\hline \[
\begin{gathered}
\text { WOH FRTE } \\
(v)
\end{gathered}
\] & FIOW ROTE （ 5 ） & FATTO & GREEN RATTO （G／C） & \[
\begin{gathered}
\text { CAFCTTY } \\
\text { (c) }
\end{gathered}
\] & \[
\begin{gathered}
v / E \\
\text { RATTO }
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{EB}

WE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LT & 549 & 1261 & \％． 43 & \％\(=415\) & 凹亿 & 1．989 \\
\hline
\end{tabular}

NB

5 B
TF
850
3546
\％，241
\(0.49 \%\)
1746
0.491

Sum（v／s）©ritical＝0．757
Lost Time Fey Cymber \(L=6.0\)＝ew．

```

IEVEL OF कEPपTGE MQबSHEET



```
EE
4E
```



```
NE
```



```
gE
```


1

Tntersection Delay $=20$ (sec/veh) $\quad$ Tntersection $\quad$ (De $=$



```
ZDENTYFYTNG IMFOEQTTGN
```



```
NAME OF THE EAGT /OEST GTREET. . . : : : . WQOADWAY
NAME OF THE NORTHGOUTH STREET...."."WENTFRL NVE
AEEA TYPE,",n".".".".n."."."....."."."OTHEE
```






```
OTHER TNFOFNATTON:
FFOTEOTED IqGG CONDTTTON ... DNE WAY CTFCULATTON
TBAFFTC VOLUHES
```



```
LEFT
THEU
 %
 0)
 169
 %
```


e!
9 ..... )92169
)
"

```
(FTOR volume must be 1 bss than or equal to FTGHT tum volumes.)
```



## ADJUSTMENT FACTORS

|  | GRADE (\%) | HEGVY VEH. <br> (\%) | ADTACENT $Y / N$ | $\begin{aligned} & \mathrm{FCO} \\ & (\mathrm{Nm}) \end{aligned}$ | Euses <br> (Nb) | FHIF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ESSTEOUND | 9. | 3.00 | N | ) | - | ). 9 |
| WESTEOUND | ¢, | 3.0 | N | 0 | \% | 0. 0 |
| NOFTHEDUND | O. 0 | - 00 | N | ) | ) | ). 9 |
| COUTHEOUND | 0.00 | 3.00 | N | 0 | 0 | 0,70 |

Wh =- mumber of perimg maneuvershtry No mumber of buses etoppirgath
GONFIETTNG FEDS FEDESTETAN BUTTON
(peds/hour) (Y/人) (min T)
(Y/A) (minT) ARFTVAL TYF

min $T=$ mimimum green time for pedestrians


EAST UEST FHASTUG
PHASE 1 PHAGE 2 PHASE O PHAE- 4
EASTEOUMD
LEET $X$
THFU $\quad \mathrm{X}$
FIGHT $x$
FEDS
j
WESTEOUND
LEFT $X$
THFU $x$
FIEHT $x$
FEDS
NORTHEOUND FT
SOUTHEQUND ET


NOFTH/SOUTH PMCSTNE

| NOFTHEOUH | FHACE-1. | FHASE-2 | PHASE- | FHace-4 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| LEFT | $x$ |  |  |  |
| THRU | X |  |  |  |
| RTGH: | X |  |  |  |
| FEDS |  |  |  |  |
| SOUTHEOUND |  |  |  |  |
| LEFT | $x$ |  |  |  |
| THFUS | $x$ |  |  |  |
| ETGHT | $x$ |  |  |  |
| PEDS |  |  |  |  |
| EASTBOUND ET |  |  |  |  |
| WESTEOUND RT |  |  |  |  |
| GREEN YEUTW + A : | $550$ | $0$ | $0=0$ | $0$ |
| YELLOW + ALt FEO | 59 | 0.0 | $0.0$ | $0,0$ |



```
G&GHATTON FLOW ADJUGT ENT WORGSHEET
 Fage
```



```
EO
UE
 4T 1800 1 0.900 0. 905 1.000 1.000 1.000 1.000 1.000 0.765 126
NE
 TF 1800 2 1.000 0.985 1.00% 1.000 1.000 1.000 0.97% 1.000 उ45
5R
 TF 1800 2 1.000 0. 7ब5 1.000 1.000 1.000 1.000 1.000 1.000 F54
```

| AOJ. | ADJ. GAT, | Floul |  | HANE CROUF |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FLOW FATE } \\ \text { (v) } \end{gathered}$ | FIOW RATE (5) | $\begin{aligned} & \text { FOTTO } \\ & (v \% E) \end{aligned}$ | GEEN EATIO $(\mathrm{g} / \mathrm{C})$ | COPACTTY $(c)$ | Y/ <br> FATTO |

## $E E$

HB
LT
547
1201
), $A 8$
$0.4=0$
56
$0.967 \%$

NB
TF
1111
342
0.322
0.45
$155 \%$
$0.715 \%$
SE
$\begin{array}{llllll}\text { TRE } & \text {-546 } & 0.000 & 15 \% & 0.450 & 000\end{array}$
Gycle lemgthy $C=60,0$ sec.
bost Time Fer Cymen $!=6.0$ wec.

Sum (v/s) $x+i+i+0,=0.757$
$\times$ critieal $=0.641$

```
LEVEL OF -GERYRE WORESHEE'
```



```
 O DELAY LAME DELAY LANE LANE DEIAY IGS
```



```
 FATIO EATIO LEN. D CAF. F FAGT: DELAV LOS AFP= AFF.
EE
WE
 LT 0.9% 0.450 60. 12.2 F6@ 21.9 1.00 34.1 D % % 1. D
NB
 TF 0.715 0.450 60% 102 15FG 1.1 1.00 11.3 B 11.3 E
SB
 TR
 0,00 %5% 60.0
 8,4 1596
 02
 1.00
 0.6 E
 E% E
```

Intersection Delay $=1$. A (sec/veh) Tntersection bos = C

| SATUFATTON FLOW ADJUSTEN VORGUEET |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \text { ToF } \\ & \text { cAT. } \\ & \text { Fhou } \end{aligned}$ | $\begin{aligned} & \text { NQ. } \\ & 1 . N S \end{aligned}$ | $f$ | $\stackrel{f}{4 v}$ | $0$ | $\mp$ <br> P | $\stackrel{f}{\mathrm{EE}}$ | $\stackrel{f}{9}$ | $\uparrow$ <br> ET | $\begin{aligned} & f \\ & L T \end{aligned}$ | $\begin{aligned} & \text { ad. } \\ & \text { FAT. } \\ & \text { FIDP } \end{aligned}$ |
| EG |  |  |  |  |  |  |  |  |  |  |  |
| T | 1800 | 2 | 1.60 | . 985 | 1.0毋\% | 1.00\% | 1.000 | 1.000 | 1.000 | 1.00 | -548 |
| F | 130 | 1 | 1. 000 | 0.9¢5 | 1.000 | . 6.5 | 1.00 | 1.00 | 0.850 | i.000 | 12 gl |
| WE |  |  | $\dagger$ |  |  |  |  |  |  |  |  |
| NE |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1800 | 1 | 0.950 | 0.985 | 1.000 | 1.000 | $1=00$ | 1.000 | 1.000 | \%, 9 \% | $156 \%$ |
| T | 1800 | 1 | 0.970 | 0.985 | 1.000 | - 600 | 1. 0 O | 1. 000 | 1.000 | 1.000 | 1376 |
| SE |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 180 | 2 | 0.70 | \%. 99 | 1.90 | 1.00 | 1.000 | $1=000$ | 1.900 | 9. 920 | \%934 |
| $T$ | 1800 | 1 | 1.090 | 0.795 | 1.09 | 1.000 | 1.000 | 1.600 | 1.000 | 1.000 | 1.778 |
| r | $180 \%$ | 1. | 1.000 | \%. 98 | 1.0め0 | . 900 | I. 000 | 1.000 | 0.85\% | 1.000 | 126 |



|  | ```@0]. FlOQ FaTE (v)``` | $\begin{gathered} \text { A03: } \mathrm{FAT} \\ \text { O4 FATE } \\ \text { (s) } \end{gathered}$ | $\begin{aligned} & \text { FLON } \\ & \text { arTo } \\ & (v ;\rangle) \end{aligned}$ | REEEN TGTO (a/C) | LANE GROUF CAPACITY (c) | चAc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ee |  |  |  |  |  |  |
| . 7 | 464 | 3546 | 0.131 | \%. 171 | $6{ }^{\text {¢ }}$ | . 754 |
| F | 200 | 1-31. | 0.172 | 9.171 | $20$ | 1.60 |

WE
NB
$\frac{1}{7}$
159
1560
0.101
0.100
$157 \quad 1.014$
). 767
9.600
$9201.31 \%$

SE

| 1 | 22 | \%54 | 9. 106 | \%, 100 | 区S | 1.661 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ | 657 | $177 \%$ | 0.485 | 0.600 | 1064 | ), $0^{05}$ |
| $F$ | 226 | 1206 | $0 \times 189$ | O.60 | $7 \times 3$ | \%-15 |

Gycle length, $C=70.0$ Eec.
Lost Time Fer Cyme.
Sum (v/E) oritital = 1.964




```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { V世 } \\
\text { FATG }
\end{gathered}
\] & \[
\begin{gathered}
\text { get } \\
\text { BATO }
\end{gathered}
\] & CYCIE EFN. & \[
\begin{gathered}
\text { DELAY } \\
\frac{1}{1}
\end{gathered}
\] & \begin{tabular}{l}
AME \\
GEOIF \\
की
\end{tabular} & \[
\begin{gathered}
\text { TELAY } \\
\mathrm{d} \\
2
\end{gathered}
\] & \[
\begin{aligned}
& \text { FBOD. } \\
& \text { FAGT. }
\end{aligned}
\] & \begin{tabular}{l}
1 MUE \\
GFe \\
OELAY
\end{tabular} & LABE BEF. 1.9 & \[
\begin{aligned}
& D E G A Y \\
& B Y \\
& A F F
\end{aligned}
\] & \[
\begin{aligned}
& \text { LOS } \\
& \text { EY } \\
& \text { AP. }
\end{aligned}
\] \\
\hline \multicolumn{12}{|l|}{EB} \\
\hline F & 9.764 & 9.171 & 7 O & 21.8 & 6 e & 4,0 & 1.0) & \%, \% & \(\cdots\) & 49.2 & D \\
\hline P & 1. ¢\% & 0.171 & 79.0 & 2\%.0 & 20 & 47.2 & 1.00 & 67.3 & F & & \\
\hline WE & & & & & & & & & 1 & & \\
\hline NS & & & & & . & & & & & & \\
\hline 1 & 1.014 & . 100 & 7 F & 24.0 & 15 & 59.9 & 1.00 & 8.7 & F' & * & \(\%\) \\
\hline T & 1,311 & \%,600 & 70.0 & \% & 92\% & \% & 1.00 & \% & * & & \\
\hline \multicolumn{12}{|l|}{5 E} \\
\hline \(\underline{1}\) & 1.0¢ 1 & \%.100 & 7 O & 24. 1 & उ\% & -9.6 & 1.00 & 8\%.7 & \(F\) & 27. & D \\
\hline T & 0. \(\mathrm{\theta} \mathrm{e}\) & -60¢ & 7 O & 9.2 & 1064 & \% & 1.00 & 11. & F & & \\
\hline F & ¢5 & . 0 ¢ & 79 & 5.2 & \(72 \%\) & \% \(=1\) & 1.0 & \(\square\) & B & & \\
\hline
\end{tabular}
```



```
* Delay and boe not mesmimgrul whem any ve: is greater then 1.2
```




```
TDENTTFY CGं INTORMAT:OH
```



```
NATE TF THE EAST/HEST STREET...."....WASHTHGTRN STREET
NAWE OF THE NOFTH/SOUTH STREET:".".".GENTRAL AVE
```




```
NAME TF THE ANALYGT,",n,nn",",",",=",DRT
OATE OF THE AHMLYSTSn:":"=n".":".".",4%26/GE
```



```
GTHEF TNFOFDMTTON:
FFOTECTED 199G CONDITION -.. CENTROL SUNUE WTWENTNO
TRAFEIG VOLURES
\begin{tabular}{|c|c|c|c|c|}
\hline & \(E \mathrm{~B}\) & WE & 18 & 5 E \\
\hline 1 EFT &) & 0 & 148 & 276 \\
\hline THRU & 95 & 0 & 974 & 771 \\
\hline FTAMT & 196 & 0 & 0 & 2 F \\
\hline PTore & b &] & \% & \% \\
\hline
\end{tabular}
(RTGR volume must be 3 ese than we squal to frot turn volumes.)
```

```
NHEFE OF &AES FEF DREEOTTON TNCLUDTNS TURN EAGS:
```




## ADJUSTHENT FAMTORE



|  | GRADE <br> (\%) | HEAVY VEH. (\%) | $\begin{aligned} & \text { ADJACENT } \\ & \because / \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{FK} \\ & (\mathrm{Nm}) \end{aligned}$ | घuses <br> (Nb) | $\mathrm{FH}=$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTETUWD | 0.0 | $\cdots$ | $Y$ | 10 | ) | ¢, |
| WESTETUMO | 0.0 | \%.00 | $Y$ | 10 | 0 | . 9 |
| NOETHEOUMD | ). \% | - 00 | $Y$ | 20 | ) | \%.9 |
| SOUTHEOUND | 0 | 3.00 | $\gamma$ | ) | ) | 0.9\% |

No = mumber of partimg mencuvershhr Nb mamber of buses stoppinghor

|  | COWFITETTNG PEDS (реds/hour") | $\begin{aligned} & \text { FEDE } \\ & \{Y / N \end{aligned}$ | $\begin{gathered} \text { BUTTON } \\ (m \text { ? } \end{gathered}$ | ARETVA |
| :---: | :---: | :---: | :---: | :---: |
| EASTEOUMD | \% | N | 17.0) | ? |
| WESTBOUNO | 5 | N | 17.0 | \% |
| NOETHEDUND | 50 | N | 9.6 | 3 |
| SOUTHEOUMD | 5 | N | $9 \times 6$ | צ |

min $T=$ minimum greer time for pedestrianc

```
GTGNA GETTTNGS - PFEFTTTNAL ANALYGTS FGGQ-G
```



```
FETHED
```



```
EAST,WEST FH%STNO
```



```
NOFTHEOUND ET
SOUTHEOUND ET
```



```
NOFTH/SOUTH FHASTNO
NOFTHEOUNO
LEFT
THEU
x
ExGHT
x
FEDS
SOUTHEOUND
\(1 E F T\)
x
THEU
FROHT
FEDS
EASTBOUND RT
WESTBCUND ET
```

GREEN
YEEIOW + ALL RED
9.0

ए,

350
. O
0.0

B 0
0.0
0.0

```
VOLIME ADOUSTMEN MOFGSHEET
 Fage-4
```



```
WG
\begin{tabular}{lll}
LT & 0 & 0.90 \\
TH & 0 & 0.90 \\
RT & 0 & 0.90
\end{tabular}
1. 00\%
1.000
1.000
NB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline LT & 148 & \% 9 & 159 & 1 & 159 & 1 & 1.00 & 1.00 & 15 & 1.00 & \%. \\
\hline TH & 974 & 0.90 & 1082 & T & 1.692 & 2 & 1. Q ¢ & 1.000 & 1156 & O.00 & 0.00 \\
\hline FT & ¢ & ¢.9\% & & & . & & & 1.)0 & 11.8 & - & -0, \\
\hline
\end{tabular}
58
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline LT & 276 & 0.90 & 307 & 1 & 307 & 2 & 1.050 & 1.000 & 322 & 1.00 & 0.00 \\
\hline TH & 771 & 0.90 & 857 & TR & 1.084 & 2 & 1.080 & 1.600 & 1139 & 0.00 & \%.21 \\
\hline Et & 205 & 0.90 & & & & & & 4.600 & & & \\
\hline
\end{tabular}
```

|  | $\begin{aligned} & \text { TOFM } \\ & \text { GAT: } \\ & \text { FLDW } \end{aligned}$ | $\begin{aligned} & \mathrm{HO} \\ & 1 \mathrm{NE} \end{aligned}$ | $\%$ | $\stackrel{f}{H v}$ | $\stackrel{f}{6}$ | $f$ | Few | f <br> A | FT | F 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ES |  |  |  |  |  |  |  |  |  |  |  |
| $T$ | 1800 | 2 | i. ف¢ | \%.985 | 1.000 | 4.00\% | i.00 | 1.000 | ज00 | 1.000 | 3546 |
| 8 | 1 BoO | 1 | 1.00 | 9.985 | 1.000 | ). 9 | 1.000 | 1.00 | O. ESO | 1.000 | -291 |

```
WE
NE
```

| 1 | 150 | 1 | 9. 70 | . 98. | 1.00\% | 1.000 | 1.00 | 1.000 | 1.000 | \%.950 |  | 6e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 1809 | 2 | 0.770 | $0=985$ | a. ¢00 | 0.890 | 1.000 | 1.000 | +.00 | 1.00 |  | ¢ |

SE

| 1. | 150 | 2 | 0.930 | 0,985 | 1. OO | 1.60 | 1.00 | *. O¢¢ | \% | . $0^{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TE | 1890 | 2 | 1.09\% | 9.985 | 1.60 ¢ | 0.690 | +,00 | 1.000 | 0.965 | 1.000 |  | 97 |


| . $\cdot$ | $\begin{gathered} \text { AD. } \\ \text { Flow Fate } \\ \text { (v) } \end{gathered}$ | ```OD. Sी: FEON RATE (#)``` | $\begin{aligned} & \text { Fub } \\ & \text { FATO } \\ & (v, 9) \end{aligned}$ | GFEEN FATTO (a/C) | 1. ANE GRTUF CAPACITY (a) | $V \%$ <br> FATTO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Es |  |  |  |  |  |  |
| 7 | 464 | 546 | \%. 1.1 | 0. 200 | 769 | \% 65 |
| F | 9) | 1281 | 0.172 | . 200 | 25 | \%.859 \% |
| WE |  |  |  |  | ) |  |
| NS |  |  |  |  |  |  |
| 1 | $159$ | $156$ |  | 0.143 | 224 | 9.710 |
| $T$ | 1.156 | 毋ठ1 | $\text { , } \quad 71$ | O.59 | 1.616 | \%.762 |
| SE |  |  |  |  |  |  |
| 1 | 32 | 394 | 0.106 | 9.143 | 48 | $9_{n} 743$ |
| $T \mathrm{~F}$ | 11.89 | \%97 | - F F | 0.52 | 1616 | ). 79 m |

Cycle kemoth, $\because=70.0$ cem
Lost Time Fer Cyche, $1 .=\quad$ :

Sum (v/s) שriticel =on $=0$
$x$ ©ritical $=0,744$

|  | $\because / 6$ <br> FATIT | $\begin{gathered} 9 / 6 \\ \text { RATri } \end{gathered}$ | $\begin{aligned} & \text { CYQE } \\ & \text { UEM. } \end{aligned}$ | $\begin{gathered} \text { DEIAY } \\ d \\ j \end{gathered}$ | IMME कृताल CAF' | $\begin{gathered} \text { DElSY } \\ d \\ 2 \end{gathered}$ | Fक्ष <br> FMDT" | IANE <br> GRF. <br> DELAY | $\begin{aligned} & \text { घEE } \\ & \text { बF } \\ & \text { We } \end{aligned}$ | DELAY <br> EY <br> FF. | 105 Ey APF= |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EC |  |  |  |  |  |  |  |  |  |  |  |
| T | , 65 | O, 200 | 70.0 | 19.6 | 79 | 1. | - 1.00 | 21:1 | $\square$ | 26.3 | П |
| F | 0.959 | 9,200 | 70.0 | 20.6 | 26 | 16.6 | 1.00 | 37.1 | $\square$ |  |  |
| WE |  |  |  | $\dagger$ |  |  |  |  |  |  |  |
| Ne |  |  |  |  |  |  |  |  |  |  |  |
| L | \%.710 | O. 143 | 70.0 | 21.7 | 24 | 6.7 | 1. 0 | 28.5 | 0 | 12.6 | B |
| T | 0.702 | 0.69\% | 7 O | 9.4 | 1.618 | 1.0 | 1.00 | 10.4 | 8 |  |  |
| 5 E |  |  |  |  |  |  |  |  |  |  |  |
| $\underline{1}$ | 9, 743 | O, $14 \%$ | 70 | 21.9 | 453 | 43.7 | 1.0\% | 26.5 | D | 34.0 | \% |
| TR | . 705 | 0, 59 | $7{ }^{\circ} \mathrm{O}$ | 7,4 | 1616 | 1.0 | 1.00 | 10.4 | E |  |  |







```
NAME OF THE ERST/WEST STGEET:":*".".WAGHRNGTON GTREET
NAME OF THE NORTH/DOUTH STFEET.".n*:"CENTROL GVE
```







```
OTHEE INWORMATIOM:
PFOTECTED 19\varnothingS CONOTTTON - DNE WAY CTFTULATTON
TRAFFTC vOLMmES
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline & Es & WE & 1 N & ¢8 \\
\hline HEF &) & ¢ & 143 & 00 \\
\hline THEU & 50 &) & 1169 & 100 \\
\hline FIEHT & ¢ & 0 & 0 & 4 E \\
\hline RTGE & \% & 0 &) &) \\
\hline
\end{tabular}
(BTOR volume must be 1 ess than or equal to Fratt tum volumes.)
```


NMEEF OF LANE FEF OTFEDTRON THQLUOXNG TURN EOYE:


| LAME | EH |  | We |  | Ne |  | 58 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TYPE | WTDTH | TVFE | 4rom | TVFE | 4TOTH | TYE | WTOTH |
| 1. | T | 120 | 4 T | 1.0 | - | 12.0 | L | 12.0 |
| 2 | T | 12.0 |  | 12.0 | T | 120 | 1.7 | 12.0 |
| $\Xi$ |  | 12.0 |  | 12.0 | T | 12.0 | F | 12.0 |
| 4 |  | 12.0 |  | 12. |  | ¢\% |  | 12.0 |
| 3 |  | 120 |  | 12.0 |  | 120 |  | 12 m |
| 6 |  | 12.0 |  | 120 |  | 120 : |  | 12.0 |

1.     - EXCLUSTVE $\quad$ EFT LANE

LT - LEFT/THFDUNH I ANE
LF - LEFT/RTOHT ONI Y ANE
LTE - LEWT/HFOUGH/GTEHT \& ANE

T - EXQLUSTUE THROUGH IANE
TR … THROUGH/RTGHT LANE
F - EXCLUSTVE RTCHT IANE

ADJUSTMENT FACTORS

|  | grade <br> (\%) | HEAVY UEH. (3/n) | AD. ACEMT $\because / N$ | $\begin{aligned} & \text { FG } \\ & (\mathrm{Nm}) \end{aligned}$ | BUSES <br> (Nu) | FHF |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ESSTEOUND | 0.00 | $\cdots$ \% | $\gamma$ | 10 | ) | \% 96 |  |
| WESTEOUND | 9.00 | $\because, 0$ | $Y$ | 10 | 0 | . .70 |  |
| NOFTHEOUND | -0 | उ,00 | $\gamma$ | 2 O | \% | 9.90 |  |
| SOUTHEOUND | 0.00 | B | Y | 20 | 0 | \%.90 |  |
| $N m=$ number | wf parksmg mameuvers fhr: |  |  |  |  | buses | mropping/tr |
|  | CONF RCTINC FEDS (peds,hour) |  | PEDESTRTAN EUTTON <br> (Y/O) (min T) |  |  |  | ARRTUAL TYFE |
| EASTEOUND |  | 8 \% | N |  | 17.0 |  | 3 |
| WESTEGUND |  | 50 | N |  | 17.0 |  | $\cdots$ |
| NOFTHEOUND |  | 5 | N |  | 9.6 |  | 3 |
| SOUTHEOUNO |  | 0 | N |  | 7.6 |  | $\square$ |

min $T=m$ mimam orear time for pedewtyians


```
 Fage-m
```




```
EAST WEST FHASTNG
```



```
FHASE-A FHAGE-2 FHASE-Z FHASE-4
EAGTBOUND
LEFT x
Thmuy x
X ;
RTGHT X
FEDS
WESTBOUND
1.EFT }
THRU }
ETGHT
X
FEDS
NOFTHEOUND FT
SOUTHEOUND FT
GREEN
15.0
0
0,%
0.0
YELIOU & ALK RED
-
.,
0.0
YEBIMA A ALB RED
).
.,
O.
NWFTH SOUTH FH\&S RNE
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{W历FTHEOUNO} & FHAEE - 1 & PHASE-2 & FH96E 3 & FHASE-4 \\
\hline & & & & \\
\hline EEFT & \(x\) & & & \\
\hline THRU & & \(x\) & & \\
\hline FTEHT & & \(x\) & & \\
\hline \multicolumn{5}{|l|}{FEDS} \\
\hline \multicolumn{5}{|l|}{5OUTHEOUNO} \\
\hline 1 EFF & \(x\) & & & \\
\hline THEU & & \(x\) & & \\
\hline FREHT & & \(\chi\) & & \\
\hline \multicolumn{5}{|l|}{PEDS} \\
\hline \multicolumn{5}{|l|}{EASTBOUND RT} \\
\hline WESTETUND ET & & & & \\
\hline SREEN & 10.0 & 30 & ¢. \({ }^{\text {a }}\) & \%) \\
\hline YELIMW + All RED & 5.0 & 8.0 & \(0 \times 0\) & -0 \\
\hline
\end{tabular}
```

| $\begin{aligned} & \text { MVT } \\ & \text { YOL } \end{aligned}$ | FHF | $\begin{aligned} & \text { AD. } \\ & \text { VOL } \end{aligned}$ | LANE区न, |  | NN | $\begin{aligned} & \text { LANE } \\ & \text { HTT } \\ & \text { FलCT } \end{aligned}$ | Cradth <br> FACT. |  | $c$ | $\begin{gathered} \mathrm{FrOp} \\ \mathrm{FT} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - $\%$ | 0.90 |  |  |  |  |  | 1.000 |  |  |  |
| 50 | 9.90 | 5 FB | T | 56 | 2 | 1. 960 | 1.000 | 5 E | 0.0 | -0 |
| \% | 9.96 |  |  |  |  |  | 1.000 |  |  |  |

WE

| HT | 0 | 0.90 |  |
| :--- | :--- | :--- | :--- |
| HH | 0 | 0.90 | 1.00 O |
| FT | 0 | 0.90 | 1.00 |
|  | 1.000 |  |  |

NE

| $\underline{~ L T}$ | 1.43 | \%.9\% | 159 | $\underline{1}$ | 159 | 1 | 1. 000 | +.00 | 159 | 1. \% | ). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TH | 1169 | 0.70 | 1299 | $T$ | 1297 | 2 | t. t ¢0 | 1.000 | 1364 | \%.00 | 0.0 |
| FT | \% | 0.90 |  |  |  |  |  | 1. O 00 | 1...s. | : | :00 |

5s

| $1 T$ | \%\% | 9.9 | Ex | $\underline{\square}$ | \%0 | 1 | 1.00 | \} ¢0\% | O9 | \% | - 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TH | 100 | \%.9 | 111 | $1 . .1$ | 1.44 | 1 | 1.000 | 1.000 | $\pm 44$ | ). 2 c | . 9 |
| RT | 460 | 0.90 | 500 | F | 500 | 1 | 1.000 | 1.000 | \%) | \%, | 1.6 |

* Denotes a Defacto Left Tum Lane Group

```
SATUFATION FLOW OD,USTMENT WOGSHEF
 F%e-5
```




```
WE
NB
SE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & 1800 & 1 & 1.000 & \%.985 & 1.000 & 1.000 & 1.00 & 1.000 & \% & \% & 1694 \\
\hline T & 1900 & 1 & 1.090 & \%.965 & 1.000 & 1. ¢00 & 1.000 & 1.000 & 1.500 & 0. 987 & \\
\hline F & 189 & & , & 0,995 & & & & & & & \\
\hline
\end{tabular}
```



