Sprawl or Smart Growth?
Population Density
Change: 1950 to 2020

1950

1970

1998

2020

Society for the Protection of New Hampshire Forests
Change in Developed Land

Growth in NH from 1974 to 1992
10 Case Study Towns

Smart Growth

Smart Growth is growth that is environmentally friendly, economically sound, and supportive of community livability.
Smart Growth Principles

- Efficient Use of Land
- Mix Land Uses
- Transportation Options
- Human-Scale, Context-Sensitive Design
- Protect Environmental Quality
- Community-Based Implementation
Efficient Use of Land

• Preserve open spaces and working landscapes
Efficient Use of Land

• Concentrate Development
Efficient Use of Land

• Infill Development

Horne Street
Efficient Use of Land

• Minimize Development Footprint
Efficient Use of Land

• Cluster/Conservation Subdivision
= Traditional New England Development Pattern
Mix Land Uses

Incorporate a mix of residential, retail, educational, and commercial/business activities in close proximity
Mix Land Uses
A Mix of Uses
Transportation Options

- Support walking, biking, and public transit
Transportation Options

Connectivity and redundancy in transportation network
Use Human-Scale, Context-Sensitive Design

• Buildings: "Friendly" to pedestrians with windows and doors at eye level and consistent with historic context of area

• Streets: Reflect and support surrounding land uses in design and facilitate pedestrian crossings—not just serve cars
Protect Environmental Quality

Minimize the impact of development on environmental quality and ecological functions
Protect Environmental Quality

Ezra Green’s Farm

- Homes grouped on 40% of property
- Protects wetlands and adjacent uplands
- Most houses located close to street (= less impervious surface and more buffer for wetlands)
Foster Community-Based Implementation
Environmental Benefits of Smart Growth Practices

• Protects air quality
• Protects water quality
• Maintains open spaces and protects natural areas and habitat
• Maintains ecological functions
Compact, Mixed Use Development with Transportation Options

↓

Reduces Traffic Congestion and Driving

↓

Reduces Air Pollution
Efficient Use of Land and Minimum Impact Development

Reduces Runoff and Increases Infiltration

Protects Water Quality and Supplies
Example: Low-Density Conventional Subdivision
Example: Conservation Subdivision
Study by the Center for Watershed Protection, “The Benefits of Better Site Design in Residential Development.”
Effect of Development on Aquatic Habitat
Environmental Benefits of Smart Growth
Economic Impact of Smart Growth

Smart Growth is growth that is environmentally friendly, supportive of community livability, and economically sound.
Economic Implications of Smart Growth as it Pertains to:

1. Residential Development

2. Retail/Industrial Development
Residential Implications

• Community
 – Cost of Services (sewer/water, school, fire...)
 – Open Space

• Individuals
 – Commuting Costs
 – Housing Costs
 – Property Values
 – Taxes
Residential Sprawl Increases State and Local Government Costs for:

- School Construction
- School Busing
- Road Construction
- State Police Coverage
- Air and Water Pollution Control
- Growth Management
- Rural Infrastructure
Student Enrollment and School Construction Costs 1970 - 1995

(+) School construction costs, millions of $ 1975 - 1995

(-) School enrollment, thousands of students 1970 - 1995

Retail/Industrial Implications

- Economic Benefits of Smart Growth
 - Revitalization of Downtown
 - Recycling of Local Dollars
 - Consolidation of Services (transportation, etc)
 - Increased Property Values

- Costs of Sprawl
 - Increased Cost of Services
 - Leakage of Revenue
 - Forced Business Closures
 - External Costs (property value, pollution, safety)
Keys to “Smart” Economic Development

1. Comprehensive Assessment of Options
2. Educate Citizens and Public Officials
3. Integrate Smart Growth in Planning Activities
Case Study: Green Bay
Comprehensive Retail Assessment

Assessment Goals

• Assess desirable categories of business

• Determine strengths and weaknesses with respect to retaining and attracting business

• Consider needs of local citizens, consumers, retailers, developers, and the environment
Green Bay Process

1. Assessed needs/wants of community
2. Used GIS and other data to identify retail options
3. Made recommendations to the Planning Board
4. Educated Green Bay citizens and Public Officials
5. Developed regulatory devices to promote smart retail development
Supply & Demand Analysis, Specialty Foods

- **Specialty Food Share**
- **Major Grocers**

Demand per Sq Mile ($000s)
- 0-9,000
- 9,000-25,000
- 25,000-50,000
- 50,000-136,000
- 136,000-318,000

- [Map of demand analysis]

University of Wisconsin Cooperative Extension
Tools for Smart Economic Development

- Brownfield Redevelopment
- Business Incubators/Micro Enterprise Dev.
- Direct Local Investment
- Land Banking
- Split-rate Property Tax
- Historic Preservation
- Streamlined Permitting (articulate what development is/isn’t acceptable)
Smart Growth in Dover

It’s about the environment, economy, and people

Community well being
It’s a story that we create with our actions
Where we decide to shop, work, and live
Where we play at a young age
and when we are daring
Walking and canoeing in a rural landscape

or a more developed setting

... each beautiful...
Finding time to enjoy Dover alone and with friends and family
Greeting friends

Feeling safe
Being in an aesthetically pleasing place with easy connections to your destination
City Hall
the center
of the
civic
district
Parcel map of downtown Dover with Civic District outlined
Library, District Court, Post Office, renovated Middle School – all in the core of the city
Working in downtown

Child Day Care

Music

Cameras
Volunteers & Employees
Greater Chamber of Commerce & the Main Street Program
Living in the historic areas of Dover

Two houses on a lot

Above the store
Renovation and restoration of homes
Apartments, single family homes, duplexes, condominiums, rooms and offices
Renovation of buildings for new residents
New infill development for residential use
Safe places for older residents to live and shop
Easy to walk to home, school, work, stores

Every trip starts and stops with walking....
Commuter rail needs a density of 15 to 20 households per acre for viability.

Transit needs a density of 6 to 8 households per acre for viability.
Safety for pedestrians

Parking for cars
Staying connected with the natural beauty of Dover
Staying connected by volunteering
Smart Growth: Doing whatever we can do
to respect the environment and manage our resources
to enhance the economic vitality of our city
to create a healthy, vital community